Let L be the lattice generated by $v_{1}=\langle 1,4\rangle$ and $v_{2}=\langle-2,1\rangle$. Thus, $\mathcal{B}=\left\{v_{1}, V_{2}\right\}$ is a basis for L.

1. Find three more points that lie on L
2. What is $\operatorname{det}(L)$?
3. For each set, show that each vector in the set lies on L. Does the set form a basis for L ?
(a) $B_{1}=\{\langle 8,5\rangle,\langle 3,21\rangle\}$
(b) $B_{2}=\{\langle 64,31\rangle,\langle 23,11\rangle\}$
4. Use \mathcal{B} to create a new basis \mathcal{B}^{\prime} for L by multiplying by several upper and lower triangular matrices.
Verify that your set of vectors \mathcal{B}^{\prime} is a basis for L.
5. Consider the basis \mathcal{B}, your basis \mathcal{B}^{\prime} from \#4, and any set from \#3 that is a basis.
(a) Calculate the Hadamard ratio of each basis.
(b) What does this tell you about the skewedness of each basis?
6. Create a basis for L with a Hadamard ratio less than 0.01
