Let *L* be the lattice generated by  $v_1 = \langle 1, 4 \rangle$  and  $v_2 = \langle -2, 1 \rangle$ . Thus,  $\mathcal{B} = \{v_1, v_2\}$  is a basis for *L*.



- 1. Find three more points that lie on *L*
- 2. What is det(L)?

- 3. For each set, show that each vector in the set lies on *L*. Does the set form a basis for *L*?
  (a) B<sub>1</sub> = { (8,5) , (3,21) }
  (b) B<sub>2</sub> = { (64, 31) , (23, 11) }
- 4. Use B to create a new basis B' for L by multiplying by several upper and lower triangular matrices.
  Verify that your set of vectors B' is a basis for L.

- 5. Consider the basis  $\mathcal{B}$ , your basis  $\mathcal{B}'$  from #4, and any set from #3 that is a basis.
  - (a) Calculate the Hadamard ratio of each basis.
  - (b) What does this tell you about the skewedness of each basis?
- 6. Create a basis for L with a Hadamard ratio less than 0.01