Problem Set \#4

Due Thursday, February 23, 2023 @ 11:59 pm
Submit as single pdf file to Canvas

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Prove the following by proving the contrapositive using two cases.
$\forall m, n \in \mathbb{Z}$, if $n m$ is odd, then n is odd and m is odd.
2. Prove that there is no least positive rational number.
3. For all integers n, prove n^{3} is even iff n is even.
4. Determine whether each statement is true or false.

If it is true, then give a proof. If it is false, then provide a counterexample.
(a) The difference of the squares of any two consecutive integers is odd.
(b) For all integers n, if n is prime, then $(-1)^{n}=-1$.
(c) The sum of any four consecutive integers has the form $4 k+2$ for some integer k.
5. Use mathematical induction to prove that

$$
1+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { for all integers } n \geq 1
$$

References for problems: 1. Ernst, Introduction to Proof via Inquiry-Based Learning, Section 2.5; 2. Epp, Discrete Mathematics with Applications, 4th edition, Exercise 4.6.7; 4. Epp, Exercises 4.1.58, 4.1.51, 4.4.37; 5. Epp, Exercises 5.1.10

