Discuss with your partner(s)

1. Let X and Y be finite sets and $f: X \rightarrow Y$ a function.
(a) Give an example where f is one-one but not onto
(b) Give an example where f is onto but not one-one
(c) Give an example where f is both one-one and onto Note: You can change X and Y for each part.
2. Repeat \#1 with $X=\mathbb{R}$ and $Y=\mathbb{R}$
3. Repeat \#1 with $X=\mathbb{Z}$ and $Y=\mathbb{Z}$
4. Define $m: \mathbb{Z} \rightarrow\{0,1,2,3,4\}$ by $m(n)=r$ where r is the remainder when n is divided by 5 .
(a) What is $m(6) ? m(10) ? m(-3) ? m(3)$?
(b) What is $m(\{7,8\})$?
(c) What is $m^{-1}(0) ? m^{-1}(1) ? m^{-1}(\{2,3\})$?

Note: It may help to review the quotient remainder property from Week 4.
5. Find the domain and range of each of the following functions:
(a) The function that assigns to each natural number its last digit (in its base 10 representation)
(b) The function that assigns to a finite string of 0's and 1's the number of 1's in the string. From Rachelle DeCoste
6. Let S be the set of all strings of 0 's and 1 's of length 3 , and let $A=\{a, b, c\}$.
(a) List the elements of S
(b) Define a bijection $f: S \rightarrow \mathcal{P}(A)$
7. Let T be the set of all strings of 0 's and 1 's of length n, and let $B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$.
(a) What is $|T|$?
(b) Define a bijection $g: T \rightarrow \mathcal{P}(B)$
8. Repeat \#1 with $X=\mathbb{Z}$ and $Y=\mathbb{N}$
9. Repeat \#1 with $X=\mathbb{N}$ and $Y=\mathbb{N} \times \mathbb{N}$

