Discuss with your partner(s)

- Write each of the following in set-builder notation:
 (a) The set of integers that are multiples of 3
 (b) The set of rational numbers whose square is less than 2
- 2. Let $A = \{n \in \mathbb{Z} \mid n = 2k \text{ for some } k \in \mathbb{Z}\}$ and $B = \{m \in \mathbb{Z} \mid m = 4j \text{ for some } j \in \mathbb{Z}\}.$ Prove $B \subseteq A$. Is $B \subset A$?
- 3. Let $A = \{a, b, c\}$ and $B = \{a, c, d, e\}$ with universal set $U = \{a, b, c, d, e, f\}$. Find each of the following:

(a)	$A \cup B$	(d)	B – A	(g)	$A^{c} \cup B^{c}$
(b)	A ∩ B	(e)	A ^c	(h)	$(A \cap B)^{c}$
(c)	A – B	(f)	A imes B	(i)	P(A)

Math 211 Discrete Math (T. Ratliff)

March 6, 2023

- 4. Determine whether each of these statements is true or false.
 - (a) $x \in \{x\}$ (c) $\{x\} \in \{x\}$
 - (b) $\{x\} \subseteq \{x\}$ (d) $\emptyset \subseteq \{x\}$
- 5. Use an element argument to prove that $B A = B \cap A^c$
- 6. Consider DeMorgan's law: $(A \cap B)^c = A^c \cup B^c$
 - (a) Sketch a Venn diagram to convince yourself that this statement is true.
 - (b) Use an element argument to prove it is true.
- 7. Formulate the other version of DeMorgan's law and repeat #6 using it.

2