Work on these with your partner(s) at the board

1. Consider the sum

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\cdots+\frac{1}{n(n+1)}
$$

(a) Compute the sum for a few values of n
(b) Form a conjecture for the value of the sum that depends only on n
(c) Use induction to prove your conjecture
2. Determine whether each statement is true or false. If it is true, then give a proof. If it is false, then provide a counterexample.
(a) $\forall n \in \mathbb{N}, 6 n^{2}+1$ is not a perfect square
(b) $\forall n \in \mathbb{N}, 23 n^{2}+1$ is not a perfect square
(c) $\forall n \in \mathbb{N}, 991 n^{2}+1$ is not a perfect square

