Discuss these with your partner(s)

- 1. Let P(x) be the predicate " $x^2 \ge x$ "
 - (a) What are the truth values of P(2)? $P(\frac{1}{2})$?, P(-1)?
 - (b) If the domain is $D = \mathbb{Z}$, find the truth set of P(x)
 - (c) If the domain is $D = \mathbb{R}$, find the truth set of P(x)
- 2. Let Q(x) be the predicate " $x^4 \ge x$ ". Determine the truth value of each statement.
 - (a) $\forall x \in \mathbb{Z}, Q(x)$
 - (b) $\forall x \in \mathbb{R}, Q(x)$
 - (c) $\exists x \in \mathbb{R}$ such that Q(x)

- 3. Rewrite the following informally without quantifiers or variables: (a) $\forall x \in \mathbb{Z}$, if x > 0, then $x^2 > 0$
 - (b) $\exists x \in \mathbb{R}$ such that $x^2 = 9$

From Rachelle DeCoste

- 4. Let R be the domain of the predicate variable x. Which of the following are true and which are false? Give counter examples for those that are false.
 (a) x > 2 ⇒ x² > 4
 - (b) $x^2 > 4 \Rightarrow x > 2$
 - (c) $x^2 > 4 \Leftrightarrow |x| > 2$

Epp, Exercise 3.22

5. Determine the true value of each statement.

(a) $\exists a, b, c \in \mathbb{Z}$ such that $a^2 + b^2 = c^2$ (b) $\exists a, b, c \in \mathbb{Z}$ such that $a^3 + b^3 = c^3$