Discuss with your partner(s)

- 1. Use Pascal's triangle to compute $\binom{6}{3}$ and $\binom{6}{4}$
- 2. Use the Binomial Theorem to expand each of the following:
 - (a) $(p+q)^5$
 - (b) $(u v)^4$
 - (c) $(x-3y)^3$
- 3. Find the coefficient of the given term.
 - (a) a^5b^4 in $(a+b)^9$
 - (b) u^7v^3 in $(2u v)^{10}$
 - (c) x^8y^3 in $(2x + \frac{y}{2})^{11}$

4. Simplify each of the following:

(a)
$$\sum_{k=0}^{11} \binom{n}{k} 2^{n-k} 3^k$$
 (c) $\sum_{k=0}^{15} \binom{n}{k} \frac{1}{2^k}$

(b)
$$\sum_{k=0}^{12} \binom{n}{k} 4^k$$
 (d) $\sum_{k=0}^n \binom{n}{k} 2^{n-k}$

5. Prove
$$\sum_{k=2}^{n+1} \binom{k}{2} = \binom{n+2}{3} \quad \forall n \ge 1$$