Discuss with your partner(s)

1. Use Pascal's triangle to compute $\binom{6}{3}$ and $\binom{6}{4}$
2. Use the Binomial Theorem to expand each of the following:
(a) $(p+q)^{5}$
(b) $(u-v)^{4}$
(c) $(x-3 y)^{3}$
3. Find the coefficient of the given term.
(a) $a^{5} b^{4}$ in $(a+b)^{9}$
(b) $u^{7} v^{3}$ in $(2 u-v)^{10}$
(c) $x^{8} y^{3}$ in $\left(2 x+\frac{y}{2}\right)^{11}$
4. Simplify each of the following:
(a) $\sum_{k=0}^{11}\binom{n}{k} 2^{n-k} 3^{k}$
(c) $\sum_{k=0}^{15}\binom{n}{k} \frac{1}{2^{k}}$
(b) $\sum_{k=0}^{12}\binom{n}{k} 4^{k}$
(d) $\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}$
5. Prove $\sum_{k=2}^{n+1}\binom{k}{2}=\binom{n+2}{3} \quad \forall n \geq 1$
