Some Big Ideas, Week 8

Mar 20 - Mar 24, 2023

- Review the summary of Function Definitions given on page 50 of Levin, Discrete Mathematics, An Open Introduction, 3rd edition.
\odot A few notes about a function $f: X \rightarrow Y$:
- The domain X of f is a set.
- The codomain Y of f is a set.
- The range of f is a subset of Y.
- If $x \in X$, then $f(x)$, the image of x, is a single element in Y.
- If $A \subseteq X$, then $f(A)$, the image of A, is a subset of Y.
- If $y \in Y$, then $f^{-1}(y)$, the preimage or inverse image of y, is a subset of X.
- If $B \subseteq Y$, then $f^{-1}(B)$, the preimage or inverse image of B, is a subset of X.
\odot General structure to prove a function $f: X \rightarrow Y$ is one-one (or injective):
- Suppose that $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
- Show that $x_{1}=x_{2}$.
\odot General structure to prove a function $f: X \rightarrow Y$ is onto (or surjective):
- Let $y \in Y$ be an arbitrarily chosen element of Y.
- Show that $\exists x \in X$ such that $f(x)=y$.
\odot Definition: If $f: X \rightarrow Y$ is one-one and onto, then define the inverse function $f^{-1}: Y \rightarrow X$ by $f^{-1}(y)=x$ iff $f(x)=y$.
\odot Definition: If $f: X \rightarrow Y$ and $g: Y^{\prime} \rightarrow Z$ where the range of f is a subset of Y^{\prime}, then define the composition $g \circ f: X \rightarrow Z$ by $(g \circ f)(x)=g(f(x))$.
\odot Definition: Sets A and B have the same cardinality iff there exists a bijection $f: A \rightarrow B$. Note: Compare this to the definition of cardinality given on page 50 of Levin.

[^0]Check the Tentative Weekly Syllabus for the specific sections relevant for this week.

[^0]: Some of the resources I used in constructing the Big Ideas notes this semester are: Ernst: Introduction to Proof via Inquiry-Based Learning; Epp: Discrete Mathematics with Applications, 4th edition; Levin: Discrete Mathematics, An Open Introduction, 3rd edition; Sundstrom: Mathematical Reasoning, Writing and Proof, Version 3; and the notes of my colleague, Rachelle DeCoste at Wheaton.

