The Invertible Matrix Theorem (Thm 2.8): Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has *n* pivot positions.
- d. The equation $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\vec{x} \to A\vec{x}$ is one-to-one.
- g. The equation $A\vec{x} = \vec{b}$. has at least one solution for each \vec{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\vec{\mathbf{x}} \to A\vec{\mathbf{x}}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- l. A^{T} is an invertible matrix.

Sketch of proof

Sketch of proof

