## The Invertible Matrix Theorem (Thm 2.8): Let $A$ be a square $n \times n$ matrix. Then the following statements are equivalent.

a. $A$ is an invertible matrix.
b. $A$ is row equivalent to the $n \times n$ identity matrix.
c. A has $n$ pivot positions.
d. The equation $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has only the trivial solution.
e. The columns of $A$ form a linearly independent set.
f. The linear transformation $\overrightarrow{\mathbf{x}} \rightarrow A \overrightarrow{\mathbf{x}}$ is one-to-one.
g. The equation $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. has at least one solution for each $\overrightarrow{\mathbf{b}}$ in $\mathbb{R}^{n}$.
h. The columns of $A$ span $\mathbb{R}^{n}$.
i. The linear transformation $\overrightarrow{\mathbf{x}} \rightarrow A \overrightarrow{\mathbf{x}}$ maps $\mathbb{R}^{n}$ onto $\mathbb{R}^{n}$.
$j$. There is an $n \times n$ matrix $C$ such that $C A=I$.
$k$. There is an $n \times n$ matrix $D$ such that $A D=I$.
l. $A^{T}$ is an invertible matrix.

## Sketch of proof



