The Invertible Matrix Theorem (Theorem 2.8)
Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A , the statements are either all true or all false.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\overrightarrow{\mathbf{x}} \rightarrow A \overrightarrow{\mathbf{x}}$ is one-to-one.
g. The equation $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathrm{b}}$. has at least one solution for each $\overrightarrow{\mathrm{b}}$ in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $\overrightarrow{\mathbf{x}} \rightarrow A \overrightarrow{\mathbf{x}}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
j. There is an $n \times n$ matrix C such that $C A=I$.
k. There is an $n \times n$ matrix D such that $A D=I$.

1. A^{T} is an invertible matrix.

Recall Theorems 1.4 and 1.12:

Theorem 1.4

Let A be an $m \times n$ matrix. The following are equivalent:
a. For all $\overrightarrow{\mathrm{b}} \in \mathbb{R}^{m}, A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathrm{b}}$ has a solution.
b. Each $\overrightarrow{\mathbf{b}} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
c. The columns of A span \mathbb{R}^{m}
d. A has a pivot in every row.

Theorem 1.12
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and A the standard matrix for T.
a. T maps \mathbb{R}^{n} onto \mathbb{R}^{m} iff the columns of A span \mathbb{R}^{m}
b. T is one-one iff the columns of A are linearly independent

Sketch of proof of the Invertible Matrix Theorem

