From Lay, Section 2.1

THEOREM 2 Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=(A B) C \quad$ (associative law of multiplication)
b. $A(B+C)=A B+A C \quad$ (left distributive law)
c. $(B+C) A=B A+C A \quad$ (right distributive law)
d. $r(A B)=(r A) B=A(r B)$ for any scalar r
e. $I_{m} A=A=A I_{n} \quad$ (identity for matrix multiplication)

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 3 & 4\end{array}\right], C=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]$, and $D=\left[\begin{array}{rrr}1 & 2 & -3 \\ -2 & 1 & 3\end{array}\right]$

1. Compute $A B$ and $B A$ by hand
2. Compute $A C$ and $B C$ by hand
3. Compute $A D$ and $D A$ by hand
4. What interesting properties of matrix multiplication do these examples demonstrate?

Let $F=\left[\begin{array}{rrr}1 & 0 & 3 \\ 2 & 2 & 3 \\ 0 & 4 & -7\end{array}\right], G=\left[\begin{array}{rrr}3 & -2 & 4 \\ 7 & 12 & 8 \\ 16 & 2 & 3\end{array}\right], E_{1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$

Feel free to use today's Mathematica notebook for these computations.
5. Find F^{-1} and G^{-1}
6. Compare the following products: $\quad F^{-1} G^{-1}, \quad G^{-1} F^{-1}, \quad(F G)^{-1}, \quad(G F)^{-1}$
7. Compare $(F G)^{T}, F^{\top} G^{\top}$, and $G^{\top} F^{\top}$
8. Find $\left(F^{T}\right)^{-1}$
9. Compare $F, E_{1} F$, and $E_{2} E_{1} F$

What general observations can you make from your computations?

