RATLIFF8102

b.socrative.com/login/student/ or Socrative app

The matrix for the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that reflects across the line $y=x$ is given by

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

The matrix for the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates about the origin by $\frac{\pi}{2}$ radians clockwise is given by

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

 or Socrative appThe matrix for the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that rotates about the x-axis by $\frac{\pi}{2}$ radians counterclockwise is given by

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

For each transformation T, find the corresponding matrix A

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ stretches horizontally away from the y-axis by a factor of 2
2. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects across the x-axis
3. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates by $\frac{\pi}{4}$ clockwise and then stretches horizontally away from the y-axis by a factor of 3
4. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ projects onto the yz-plane

Note you can use the Mathematica notebook sep12.nb from Tuesday to verify your answers for 1,2 , and 3.

