Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(\vec{x})=A \overrightarrow{\mathrm{x}}$.

$$
\text { Let } \overrightarrow{\mathrm{e}_{1}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \overrightarrow{\mathrm{e}_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text {, and } \overrightarrow{\mathrm{u}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text {. }
$$

For each matrix A,
(a) Find $T\left(\overrightarrow{\mathrm{e}_{1}}\right), T\left(\overrightarrow{\mathrm{e}_{2}}\right)$, and $T(\overrightarrow{\mathrm{u}})$
(b) Plot these vectors in \mathbb{R}^{2}
(c) Give a geometric description of T.

$$
\text { 1. } A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \quad \text { 2. } A=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right] \quad \text { 3. } A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

