From Lay, Section 1.4

THEOREM $4 \quad$ Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
a. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
b. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
c. The columns of A span \mathbb{R}^{m}.
d. A has a pivot position in every row.

Answer True / False

Let $\begin{aligned} & \overrightarrow{\mathbf{v}_{1}}=\langle 1,3,18,2\rangle \\ & \overrightarrow{\mathbf{v}_{2}}\end{aligned}=\langle 2,-1,9,0\rangle \quad$ and $\quad A=\left[\begin{array}{rrr}1 & 3 & 2 \\ -2 & 1 & 4 \\ 6 & 2 & 1 \\ 5 & -17 & 32\end{array}\right]$

1. The columns of $A \operatorname{span} \mathbb{R}^{4}$
2. The vectors $\left\{\overrightarrow{\mathbf{v}_{1}}, \overrightarrow{\mathbf{v}_{2}}, \overrightarrow{\mathbf{v}_{\mathbf{3}}}, \overrightarrow{\mathbf{v}_{4}}\right\}$ span \mathbb{R}^{4}
3. Let $B=\left[\begin{array}{lll}\overrightarrow{\mathbf{v}_{1}} & \overrightarrow{\mathbf{v}_{2}} & \overrightarrow{\boldsymbol{v}_{3}} \\ \overrightarrow{\boldsymbol{v}_{4}}\end{array}\right]$ and $\overrightarrow{\mathbf{b}}=\left\langle 72,-128, \pi, e^{-411}\right\rangle$

The matrix equation $B \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has a unique solution
4. There exists $\overrightarrow{\mathbf{b}} \in \mathbb{R}^{4}$ such that $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has infinitely many solutions.
5. Let $A=\left[\begin{array}{rrr}1 & 3 & 5 \\ -2 & -6 & 7\end{array}\right]$
(a) Find all solutions to the homogeneous system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$.
(b) Find all solutions to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ where $\overrightarrow{\mathbf{b}}=\left[\begin{array}{r}-3 \\ 9\end{array}\right]$.
6. Find all solutions to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ where

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & 5 \\
2 & 4 & 3 & 1 \\
-1 & -2 & -6 & -14
\end{array}\right] \text { and } \overrightarrow{\mathbf{b}}=\left[\begin{array}{r}
-7 \\
-4 \\
17
\end{array}\right]
$$

7. Create an example of a matrix A and vector $\overrightarrow{\mathbf{b}}$ such that $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has infinitely many solutions and $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has only the trivial solution.
