From Lay, Section 1.4

THEOREM 4

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m .
- d. A has a pivot position in every row.

Answer True / False

- 1. The columns of A span \mathbb{R}^4
- 2. The vectors $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ span \mathbb{R}^4
- 3. Let $B = [\vec{\mathbf{v_1}} \ \vec{\mathbf{v_2}} \ \vec{\mathbf{v_3}} \ \vec{\mathbf{v_4}}]$ and $\vec{\mathbf{b}} = \langle 72, -128, \pi, e^{-411} \rangle$ The matrix equation $B\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has a unique solution
- 4. There exists $\vec{\bf b} \in \mathbb{R}^4$ such that $A\vec{\bf x} = \vec{\bf b}$ has infinitely many solutions.

5. Let
$$A = \begin{bmatrix} 1 & 3 & 5 \\ -2 & -6 & 7 \end{bmatrix}$$

- (a) Find all solutions to the homogeneous system $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$.
- (b) Find all solutions to $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ where $\vec{\mathbf{b}} = \begin{bmatrix} -3\\9 \end{bmatrix}$.
- 6. Find all solutions to $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ where

$$A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 3 & 1 \\ -1 & -2 & -6 & -14 \end{bmatrix} \text{ and } \vec{\mathbf{b}} = \begin{bmatrix} -7 \\ -4 \\ 17 \end{bmatrix}$$

7. Create an example of a matrix A and vector $\vec{\bf b}$ such that $A\vec{\bf x}=\vec{\bf b}$ has infinitely many solutions and $A\vec{\bf x}=\vec{\bf 0}$ has only the trivial solution.