THEOREM 7

The Unique Representation Theorem

Let $\mathcal{B}=\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1,\ldots,c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

THEOREM 7

The Unique Representation Theorem

Let $\mathcal{B}=\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1,\ldots,c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

Proof: Since \mathcal{B} spans V, we know such scalars exist.

THEOREM 7

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

Proof: Since \mathcal{B} spans V, we know such scalars exist. To show the scalars are unique:

• Suppose \vec{x} can also be expressed as

$$\vec{\mathbf{x}} = d_1 \vec{\mathbf{b_1}} + \cdots + d_n \vec{\mathbf{b_n}}$$

THEOREM 7

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

Proof: Since \mathcal{B} spans V, we know such scalars exist. To show the scalars are unique:

• Suppose \vec{x} can also be expressed as

$$\vec{\mathbf{x}} = d_1 \vec{\mathbf{b_1}} + \cdots + d_n \vec{\mathbf{b_n}}$$

• Then subtracting gives
$$\vec{\mathbf{0}} = (c_1 - d_1)\vec{\mathbf{b_1}} + \cdots + (c_n - d_n)\vec{\mathbf{b_n}}$$

THEOREM 7

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

Proof: Since \mathcal{B} spans V, we know such scalars exist. To show the scalars are unique:

- Suppose \vec{x} can also be expressed as

$$\vec{\mathbf{x}} = d_1 \vec{\mathbf{b_1}} + \cdots + d_n \vec{\mathbf{b_n}}$$

Then subtracting gives

$$\vec{\mathbf{0}} = (c_1 - d_1)\vec{\mathbf{b_1}} + \cdots + (c_n - d_n)\vec{\mathbf{b_n}}$$

- Since $\ensuremath{\mathcal{B}}$ is a linearly independent set, we know that

$$c_1=d_1,c_2=d_2,\ldots,c_n=d_n$$

Give the dimension of each vector space

- 1. \mathbb{R}^{5}
- 2. \mathbb{R}^n
- 3. \mathbb{P}_2
- 4. \mathbb{P}_n

- 5. Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & -2 & 3 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 - (a) col(A)
 - (b) nul(A)
 - (c) row(A)

THEOREM 9

If a vector space V has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Let $\{\vec{\mathbf{v_1}}, \dots, \vec{\mathbf{v_p}}\}$ be a set in V where p > n.

Then $\left\{\vec{v_1},\ldots,\vec{v_p}\right\}$ is linearly dependent if there exists a nontrivial solution to

$$x_1\vec{\mathbf{v_1}} + x_2\vec{\mathbf{v_2}} + \cdots + x_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

Overview:

- We will convert this into a matrix equation $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$.
- Since p > n, A has a free variable, and there exists a non-trivial solution to the homogeneous system.
- Thus, $\left\{ \vec{v_1}, \ldots, \vec{v_p} \right\}$ is a linearly dependent set.
- Note this applies to *any* vector space V, not just \mathbb{R}^n

Since \mathcal{B} is a basis for V, we can write

$$a_{11}\vec{b_1} + a_{12}\vec{b_2} + \dots + a_{1n}\vec{b_n} = \vec{v_1}$$

$$a_{21}\vec{b_1} + a_{22}\vec{b_2} + \dots + a_{2n}\vec{b_n} = \vec{v_2}$$

$$\vdots$$

$$a_{p1}\vec{b_1} + a_{p2}\vec{b_2} + \dots + a_{pn}\vec{b_n} = \vec{v_p}$$

Since \mathcal{B} is a basis for V, we can write

$$a_{11}\vec{b_1} + a_{12}\vec{b_2} + \dots + a_{1n}\vec{b_n} = \vec{v_1}$$

$$a_{21}\vec{b_1} + a_{22}\vec{b_2} + \dots + a_{2n}\vec{b_n} = \vec{v_2}$$

$$\vdots$$

$$a_{p1}\vec{b_1} + a_{p2}\vec{b_2} + \dots + a_{pn}\vec{b_n} = \vec{v_p}$$

Remember we are looking for a non-trivial solution to

$$X_1\vec{\mathbf{v_1}} + X_2\vec{\mathbf{v_2}} + \cdots + X_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

Since \mathcal{B} is a basis for V, we can write

$$a_{11}\vec{b_1} + a_{12}\vec{b_2} + \dots + a_{1n}\vec{b_n} = \vec{v_1}$$

$$a_{21}\vec{b_1} + a_{22}\vec{b_2} + \dots + a_{2n}\vec{b_n} = \vec{v_2}$$

$$\vdots$$

$$a_{p1}\vec{b_1} + a_{p2}\vec{b_2} + \dots + a_{pn}\vec{b_n} = \vec{v_p}$$

Remember we are looking for a non-trivial solution to

$$X_1\vec{\mathbf{v_1}} + X_2\vec{\mathbf{v_2}} + \cdots + X_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

which becomes

$$x_{1}(a_{11}\vec{\mathbf{b_{1}}} + a_{12}\vec{\mathbf{b_{2}}} + \dots + a_{1n}\vec{\mathbf{b_{n}}}) +$$

$$x_{2}(a_{21}\vec{\mathbf{b_{1}}} + a_{22}\vec{\mathbf{b_{2}}} + \dots + a_{2n}\vec{\mathbf{b_{n}}}) +$$

$$\dots + x_{p}(a_{p1}\vec{\mathbf{b_{1}}} + a_{p2}\vec{\mathbf{b_{2}}} + \dots + a_{pn}\vec{\mathbf{b_{n}}}) = \vec{\mathbf{0}}$$

We can rearrange

$$x_{1}(a_{11}\vec{\mathbf{b_{1}}} + a_{12}\vec{\mathbf{b_{2}}} + \dots + a_{1n}\vec{\mathbf{b_{n}}}) +$$

$$x_{2}(a_{21}\vec{\mathbf{b_{1}}} + a_{22}\vec{\mathbf{b_{2}}} + \dots + a_{2n}\vec{\mathbf{b_{n}}}) +$$

$$\dots + x_{p}(a_{p1}\vec{\mathbf{b_{1}}} + a_{p2}\vec{\mathbf{b_{2}}} + \dots + a_{pn}\vec{\mathbf{b_{n}}}) = \vec{\mathbf{0}}$$

to

$$(x_1a_{11} + x_2a_{21} + \dots + x_pa_{p1})\mathbf{b}_1^{\mathbf{i}} + (x_1a_{12} + x_2a_{22} + \dots + x_pa_{p2})\mathbf{b}_2^{\mathbf{i}} + \dots + (x_1a_{1n} + x_2a_{2n} + \dots + x_pa_{pn})\mathbf{b}_n^{\mathbf{i}} = \mathbf{\vec{0}}$$

We can rearrange

$$x_{1}(a_{11}\vec{\mathbf{b}_{1}} + a_{12}\vec{\mathbf{b}_{2}} + \dots + a_{1n}\vec{\mathbf{b}_{n}}) +$$

$$x_{2}(a_{21}\vec{\mathbf{b}_{1}} + a_{22}\vec{\mathbf{b}_{2}} + \dots + a_{2n}\vec{\mathbf{b}_{n}}) +$$

$$\dots + x_{p}(a_{p1}\vec{\mathbf{b}_{1}} + a_{p2}\vec{\mathbf{b}_{2}} + \dots + a_{pn}\vec{\mathbf{b}_{n}}) = \vec{\mathbf{0}}$$

to

$$(x_1a_{11} + x_2a_{21} + \dots + x_pa_{p1})\vec{\mathbf{b}_1} + (x_1a_{12} + x_2a_{22} + \dots + x_pa_{p2})\vec{\mathbf{b}_2} + \dots + (x_1a_{1n} + x_2a_{2n} + \dots + x_pa_{pn})\vec{\mathbf{b}_n} = \vec{\mathbf{0}}$$

Remember $\left\{\vec{b_1},\dots,\vec{b_n}\right\}$ is a linearly independent set.

Since $\left\{\vec{b_1},\ldots,\vec{b_n}\right\}$ is a linearly independent, we get

$$x_{1}a_{11} + x_{2}a_{21} + \dots + x_{p}a_{p1} = 0$$

$$x_{1}a_{12} + x_{2}a_{22} + \dots + x_{p}a_{p2} = 0$$

$$\vdots$$

$$x_{1}a_{1n} + x_{2}a_{2n} + \dots + x_{p}a_{pn} = 0$$

Since $\left\{\vec{b_1},\ldots,\vec{b_n}\right\}$ is a linearly independent, we get

$$x_{1}a_{11} + x_{2}a_{21} + \dots + x_{p}a_{p1} = 0$$

$$x_{1}a_{12} + x_{2}a_{22} + \dots + x_{p}a_{p2} = 0$$

$$\vdots$$

$$x_{1}a_{1n} + x_{2}a_{2n} + \dots + x_{p}a_{pn} = 0$$

This converts to the matrix equation

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

Thus, A has a free variable and $A\vec{x}=\vec{0}$ has a non-trivial solution.

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

Thus, A has a free variable and $A\vec{x} = \vec{0}$ has a non-trivial solution.

This gives us a non-trivial solution to

$$X_1\vec{\mathbf{v_1}} + X_2\vec{\mathbf{v_2}} + \cdots + X_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

Thus, A has a free variable and $A\vec{x} = \vec{0}$ has a non-trivial solution.

This gives us a non-trivial solution to

$$x_1\vec{\mathbf{v_1}} + x_2\vec{\mathbf{v_2}} + \cdots + x_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

Thus, $\{\vec{v_1},\ldots,\vec{v_p}\}$ must be linearly dependent. \Box