From Lay, Section 4.4

$$
\begin{align*}
& \text { THEOREM } 7 \text { The Unique Representation Theorem } \\
& \begin{array}{l}
\text { Let } \mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\} \text { be a basis for a vector space } V \text {. Then for each } \mathbf{x} \text { in } V \text {, there } \\
\text { exists a unique set of scalars } c_{1}, \ldots, c_{n} \text { such that } \\
\qquad \mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}
\end{array}
\end{align*}
$$

From Lay, Section 4.4

THEOREM $7 \quad$| The Unique Representation Theorem |
| :--- |
| Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there |
| exists a unique set of scalars c_{1}, \ldots, c_{n} such that |
| $\qquad \mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$ |\quad (1)

Proof: Since \mathcal{B} spans V, we know such scalars exist.

From Lay, Section 4.4

THEOREM 7
The Unique Representation Theorem
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \tag{1}
\end{equation*}
$$

Proof: Since \mathcal{B} spans V, we know such scalars exist.
To show the scalars are unique:

- Suppose $\overrightarrow{\mathbf{x}}$ can also be expressed as

$$
\overrightarrow{\mathbf{x}}=d_{1} \overrightarrow{\mathbf{b}_{1}}+\cdots+d_{n} \overrightarrow{\mathbf{b}_{n}}
$$

From Lay, Section 4.4

THEOREM 7 The Unique Representation Theorem
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \tag{1}
\end{equation*}
$$

Proof: Since \mathcal{B} spans V, we know such scalars exist.
To show the scalars are unique:

- Suppose $\overrightarrow{\mathbf{x}}$ can also be expressed as

$$
\overrightarrow{\mathbf{x}}=d_{1} \overrightarrow{\mathbf{b}_{1}}+\cdots+d_{n} \overrightarrow{\mathbf{b}_{n}}
$$

- Then subtracting gives

$$
\overrightarrow{\mathbf{0}}=\left(c_{1}-d_{1}\right) \mathbf{b}_{1}+\cdots+\left(c_{n}-d_{n}\right) \overrightarrow{\mathbf{b}_{n}}
$$

From Lay, Section 4.4

THEOREM 7 The Unique Representation Theorem
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \tag{1}
\end{equation*}
$$

Proof: Since \mathcal{B} spans V, we know such scalars exist.
To show the scalars are unique:

- Suppose $\overrightarrow{\mathbf{x}}$ can also be expressed as

$$
\overrightarrow{\mathbf{x}}=d_{1} \overrightarrow{\mathbf{b}_{1}}+\cdots+d_{n} \overrightarrow{\mathbf{b}_{n}}
$$

- Then subtracting gives

$$
\overrightarrow{\mathbf{0}}=\left(c_{1}-d_{1}\right) \overrightarrow{\mathbf{b}_{1}}+\cdots+\left(c_{n}-d_{n}\right) \overrightarrow{\mathbf{b}_{n}}
$$

- Since \mathcal{B} is a linearly independent set, we know that

$$
c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{n}=d_{n}
$$

Give the dimension of each vector space

1. \mathbb{R}^{5}
2. \mathbb{R}^{n}
3. Let $A=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & -2 & 3 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) $\operatorname{col}(A)$
4. \mathbb{P}_{2}
(b) $\operatorname{nul}(A)$
(c) $\operatorname{row}(A)$

From Lay, Section 4.5

THEOREM 9 If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Let $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{p}}}\right\}$ be a set in V where $p>n$.
Then $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{p}}}\right\}$ is linearly dependent if there exists a nontrivial solution to

$$
x_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+x_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots x_{\rho} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

Overview:

- We will convert this into a matrix equation $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ where A is $n \times p$.
- Since $p>n, A$ has a free variable, and there exists a non-trivial solution to the homogeneous system.
- Thus, $\left\{\overrightarrow{\mathbf{v}_{1}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{p}}}\right\}$ is a linearly dependent set.
- Note this applies to any vector space V, not just \mathbb{R}^{n}

Proof of Theorem 4.9, continued

Since \mathcal{B} is a basis for V, we can write

$$
\begin{gathered}
a_{11} \overrightarrow{\mathbf{b}_{1}}+a_{12} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{1 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{v}_{1}} \overrightarrow{a_{21}} \overrightarrow{a_{1}} \overrightarrow{a_{22} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{2 n}^{\mathbf{b}}=\overrightarrow{\mathbf{v}_{2}}} \\
\vdots \\
a_{p 1} \overrightarrow{\mathbf{b}_{1}}+a_{p 2} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{p n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{v}_{\mathbf{p}}}
\end{gathered}
$$

Proof of Theorem 4.9, continued

Since \mathcal{B} is a basis for V, we can write

$$
\begin{gathered}
a_{11} \overrightarrow{\mathbf{b}_{1}}+a_{12} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{1 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{v}_{1}} \overrightarrow{a_{21}} \overrightarrow{a_{1}} \overrightarrow{a_{22} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{2 n}^{\mathbf{b}}}=\overrightarrow{\mathbf{v}_{2}} \\
\vdots \\
a_{p 1} \overrightarrow{\mathbf{b}_{1}}+a_{p 2} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{p n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{v}_{\mathbf{p}}}
\end{gathered}
$$

Remember we are looking for a non-trivial solution to

$$
x_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+x_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots x_{\rho} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

Since \mathcal{B} is a basis for V, we can write

$$
\begin{gathered}
a_{11} \overrightarrow{\mathbf{b}_{1}}+a_{12} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{1 n} \overrightarrow{\mathbf{b}_{n}}=\overrightarrow{\mathbf{v}_{1}} \overrightarrow{a_{21}} \overrightarrow{a_{21}} \overrightarrow{\mathbf{b}_{1}}+a_{22} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{2}=\overrightarrow{\mathbf{v}_{2}} \\
\vdots \\
a_{p 1} \overrightarrow{\mathbf{b}_{1}}+a_{p 2} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{p n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{v}_{\mathbf{p}}}
\end{gathered}
$$

Remember we are looking for a non-trivial solution to

$$
x_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+x_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots x_{\rho} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

which becomes

$$
\begin{gathered}
x_{1}\left(a_{11} \overrightarrow{\mathbf{b}_{1}}+a_{12} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{1 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)+ \\
x_{2}\left(a_{21} \overrightarrow{\mathbf{b}_{1}}+a_{22} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{2 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)+ \\
\cdots+x_{p}\left(a_{p 1} \overrightarrow{\mathbf{b}_{1}}+a_{p 2} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{p n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)=\overrightarrow{\mathbf{0}}
\end{gathered}
$$

We can rearrange

$$
\begin{gathered}
x_{1}\left(a_{11} \overrightarrow{\mathbf{b}_{1}}+a_{12} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{1 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)+ \\
x_{2}\left(a_{21} \overrightarrow{\mathbf{b}_{1}}+a_{22} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{2 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)+ \\
\cdots+x_{p}\left(a_{p 1} \overrightarrow{\mathbf{b}_{1}}+a_{p 2} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{p n} \overrightarrow{\mathbf{b}_{n}}\right)=\overrightarrow{\mathbf{0}}
\end{gathered}
$$

to

$$
\begin{gathered}
\left(x_{1} a_{11}+x_{2} a_{21}+\cdots+x_{p} a_{p 1}\right) \overrightarrow{\mathbf{b}_{1}}+ \\
\left(x_{1} a_{12}+x_{2} a_{22}+\cdots+x_{p} a_{p 2}\right) \overrightarrow{\mathbf{b}_{2}}+ \\
\cdots+\left(x_{1} a_{1 n}+x_{2} a_{2 n}+\cdots+x_{p} a_{p n}\right) \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{0}}
\end{gathered}
$$

We can rearrange

$$
\begin{gathered}
x_{1}\left(a_{11} \overrightarrow{\mathbf{b}_{1}}+a_{12} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{1 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)+ \\
x_{2}\left(a_{21} \overrightarrow{\mathbf{b}_{1}}+a_{22} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{2 n} \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right)+ \\
\cdots+x_{p}\left(a_{p 1} \overrightarrow{\mathbf{b}_{1}}+a_{p 2} \overrightarrow{\mathbf{b}_{2}}+\cdots+a_{p n} \overrightarrow{\mathbf{b}_{n}}\right)=\overrightarrow{\mathbf{0}}
\end{gathered}
$$

to

$$
\begin{gathered}
\left(x_{1} a_{11}+x_{2} a_{21}+\cdots+x_{p} a_{p 1}\right) \overrightarrow{\mathbf{b}_{1}}+ \\
\left(x_{1} a_{12}+x_{2} a_{22}+\cdots+x_{p} a_{p 2}\right) \overrightarrow{\mathbf{b}_{2}}+ \\
\cdots+\left(x_{1} a_{1 n}+x_{2} a_{2 n}+\cdots+x_{p} a_{p n}\right) \overrightarrow{\mathbf{b}_{\mathbf{n}}}=\overrightarrow{\mathbf{0}}
\end{gathered}
$$

Remember $\left\{\overrightarrow{\mathbf{b}_{1}}, \ldots, \overrightarrow{\mathbf{b}_{n}}\right\}$ is a linearly independent set.

Proof of Theorem 4.9, continued

Since $\left\{\overrightarrow{\mathbf{b}_{1}}, \ldots, \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right\}$ is a linearly independent, we get

$$
\begin{aligned}
x_{1} a_{11}+x_{2} a_{21}+\cdots+x_{p} a_{p 1} & =0 \\
x_{1} a_{12}+x_{2} a_{22}+\cdots+x_{p} a_{p 2} & =0 \\
\vdots & \\
x_{1} a_{1 n}+x_{2} a_{2 n}+\cdots+x_{p} a_{p n} & =0
\end{aligned}
$$

Since $\left\{\overrightarrow{\mathbf{b}_{1}}, \ldots, \overrightarrow{\mathbf{b}_{\mathbf{n}}}\right\}$ is a linearly independent, we get

$$
\begin{aligned}
x_{1} a_{11}+x_{2} a_{21}+\cdots+x_{p} a_{p 1} & =0 \\
x_{1} a_{12}+x_{2} a_{22}+\cdots+x_{p} a_{p 2} & =0 \\
\vdots & \\
x_{1} a_{1 n}+x_{2} a_{2 n}+\cdots+x_{p} a_{p n} & =0
\end{aligned}
$$

This converts to the matrix equation

$$
\left[\begin{array}{rrrr}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\vdots & & & \\
a_{1 n} & a_{2 n} & \cdots & a_{p n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\overrightarrow{\mathbf{0}}
$$

Proof of Theorem 4.9, continued

The matrix equation

$$
\left[\begin{array}{rrrr}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\vdots & & & \\
a_{1 n} & a_{2 n} & \cdots & a_{p n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\overrightarrow{\mathbf{0}}
$$

is the same as $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ where A is $n \times p$ with $p>n$.

The matrix equation

$$
\left[\begin{array}{rrlr}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\vdots & & & \\
a_{1 n} & a_{2 n} & \cdots & a_{p n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\overrightarrow{\mathbf{0}}
$$

is the same as $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ where A is $n \times p$ with $p>n$.
Thus, A has a free variable and $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has a non-trivial solution.

The matrix equation

$$
\left[\begin{array}{rrlr}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\vdots & & & \\
a_{1 n} & a_{2 n} & \cdots & a_{p n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\overrightarrow{\mathbf{0}}
$$

is the same as $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ where A is $n \times p$ with $p>n$.
Thus, A has a free variable and $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has a non-trivial solution.
This gives us a non-trivial solution to

$$
x_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+x_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots x_{\rho} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

The matrix equation

$$
\left[\begin{array}{rrlr}
a_{11} & a_{21} & \cdots & a_{p 1} \\
a_{12} & a_{22} & \cdots & a_{p 2} \\
\vdots & & & \\
a_{1 n} & a_{2 n} & \cdots & a_{p n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=\overrightarrow{\mathbf{0}}
$$

is the same as $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ where A is $n \times p$ with $p>n$.
Thus, A has a free variable and $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has a non-trivial solution.
This gives us a non-trivial solution to

$$
x_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+x_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots x_{p} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

Thus, $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{p}}}\right\}$ must be linearly dependent.

