1. Let $A=\left[\begin{array}{rrrrr}1 & 2 & 2 & -7 & 6 \\ 2 & 4 & 5 & -16 & 13 \\ -3 & -6 & -4 & 17 & -16 \\ 4 & 8 & 8 & -28 & 24\end{array}\right]$. Use that $\operatorname{REF}(A)=\left[\begin{array}{rrrrr}1 & 2 & 0 & -3 & 4 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Give a basis for $\operatorname{col}(A)$ and a basis for nul(A).
(b) Describe $\operatorname{col}(A)$ and $\operatorname{nul}(A)$ geometrically.
2. Let \mathcal{H} be the subspace of \mathbb{R}^{4} spanned by $\overrightarrow{\mathbf{v}_{\mathbf{1}}}=\left[\begin{array}{r}2 \\ 4 \\ -2 \\ 8\end{array}\right], \overrightarrow{\mathbf{v}_{\mathbf{2}}}=\left[\begin{array}{r}1 \\ 5 \\ -4 \\ 7\end{array}\right]$, and $\overrightarrow{\mathbf{v}_{\mathbf{3}}}=\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 4\end{array}\right]$.

Give a basis for \mathcal{H} and describe \mathcal{H} geometrically.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates the plane by $\frac{\pi}{3}$ counter-clockwise and projects onto the y-axis.
(a) Find a basis for $\operatorname{ker}(T)$ and describe $\operatorname{ker}(T)$ geometrically
(b) Find a basis for range (T) and describe range (T) geometrically
4. Let $\overrightarrow{\mathbf{u}_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right], \overrightarrow{\mathbf{u}_{2}}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right], \overrightarrow{\mathbf{u}_{3}}=\left[\begin{array}{c}-1 \\ 2 \\ 7\end{array}\right]$, and $\overrightarrow{\mathbf{b}}=\left[\begin{array}{c}17 \\ -2 \\ 4\end{array}\right]$
(a) Show that the set $\mathcal{B}=\left\{\overrightarrow{\mathbf{u}_{1}}, \overrightarrow{\mathbf{u}_{2}}, \overrightarrow{\mathbf{u}_{3}}\right\}$ forms a basis for \mathbb{R}^{3}.
(b) Write $\overrightarrow{\mathbf{b}}$ as a linear combination of the vectors in \mathcal{B}
5. Let $p_{1}(t)=1+t^{2}, p_{2}(t)=2-t+3 t^{2}$, and $p_{3}(t)=-1+2 t-t^{2}$
(a) Show that the set $\mathcal{B}=\left\{p_{1}, p_{2}, p_{3}\right\}$ forms a basis for \mathbb{P}_{2}
(b) Write $p(t)=3+6 t-7 t^{2}$ as a linear combination of the vectors in \mathcal{B}

RATLIFF8102

If $\overrightarrow{\mathbf{v}_{\mathbf{1}}}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right], \overrightarrow{\mathbf{v}_{\mathbf{2}}}=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right], \overrightarrow{\mathbf{v}_{\mathbf{3}}}=\left[\begin{array}{l}5 \\ 1 \\ 2\end{array}\right]$, then $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}, \overrightarrow{\mathbf{v}_{\mathbf{3}}}\right\}$ is a basis for \mathbb{R}^{3}
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Huh.

