RATLIFF8102

b.socrative.com/login/student/ or Socrative app
$H=$ line in the plane through the origin and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a subspace of $V=\mathbb{R}^{2}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app
$H=$ the $1^{\text {st }}$ quadrant in the plane is a subspace of $V=\mathbb{R}^{2}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

$H=\mathbb{P}_{2}$ is a subspace of $V=\mathbb{P}_{3}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

Let $\overrightarrow{\mathbf{v}_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\overrightarrow{\mathbf{v}_{\mathbf{2}}}=\left[\begin{array}{c}-2 \\ 1 \\ -5\end{array}\right]$. Then $H=\operatorname{Span}\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \overrightarrow{\mathbf{v}_{\mathbf{2}}}\right\}$ is a subspace of $V=\mathbb{R}^{3}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app
$H=$ the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrant in the plane is a subspace of $V=\mathbb{R}^{2}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

Let $A=\left[\begin{array}{cccc}1 & 0 & -2 & 3 \\ 0 & 1 & 2 & -1\end{array}\right]$
Then $H=\left\{\overrightarrow{\mathbf{x}} \in \mathbb{R}^{4} \mid A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}\right\}$ is a subspace of $V=\mathbb{R}^{4}$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

Let $A=\left[\begin{array}{rrrr}2 & 6 & 2 & 8 \\ -3 & 1 & -3 & -8 \\ 3 & 4 & 3 & 10\end{array}\right]$

1. Fill in the blank: $\operatorname{nul}(A)$ is a subspace of \mathbb{R} -
2. Is $\overrightarrow{\mathbf{x}}=\left[\begin{array}{r}2 \\ -1 \\ 3 \\ -1\end{array}\right]$ in $\operatorname{nul}(A)$?
3. Find a spanning set of vectors for $\operatorname{nul}(A)$
4. Fill in the blank: $\operatorname{col}(A)$ is a subspace of \mathbb{R} -
5. Is $\overrightarrow{\mathbf{b}}=\left[\begin{array}{r}44 \\ -36 \\ 51\end{array}\right]$ in $\operatorname{col}(A)$?
6. Find a spanning set of vectors for $\operatorname{col}(A)$
