Recall the definition of $\operatorname{det}(A)$

If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix, then the determinant of A, $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$, is a real number defined to by

- If $n=1$, then $\operatorname{det}(A)=a_{11}$, the only entry of A
- If $n \geq 2$, then

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det}\left(A_{1 n}\right)
$$

This is called the cofactor expansion along the first row

Note: You can expand along any row or any column, but you have to be careful with the \pm signs.
Let $A=\left[\begin{array}{llll}1 & 0 & 3 & 2 \\ 2 & 1 & 0 & 4 \\ 3 & 2 & 2 & 0 \\ 0 & 0 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{rrrr}-1 & 2 & 0 & 4 \\ 0 & 3 & 3 & 3 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 4\end{array}\right]$

1. Find $\operatorname{det}(A)$ by expanding along the first row
2. Find $\operatorname{det}(A)$ by expanding along the second column
3. Find $\operatorname{det}(B)$. You can pick the row or column to expand along
4. Compute $\operatorname{det}(A B)$ and $\operatorname{det}(B A)$. What property of determinants do your calculations demonstrate?
5. Calculate $\operatorname{det}\left(A^{T}\right)$ and $\operatorname{det}\left(B^{T}\right)$ What property of determinants do your calculations demonstrate?

Feel free to use Mathematica's Det[] command for \#4 and \#5.

A vector space is a nonempty set of objects V, called vectors, which have two operations defined: addition of vectors and multiplication by scalars (real numbers), subject to the ten axioms listed below.
The axioms must hold for all vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and for all scalars c and d.

1. $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}} \in V$
2. $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$
3. $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}}+(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})$
4. There exists a vector $\overrightarrow{\mathbf{0}} \in V$ such that $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{u}}$
5. For all $\overrightarrow{\mathbf{u}} \in V$, there is a vector $-\overrightarrow{\mathbf{u}} \in V$ such that $\overrightarrow{\mathbf{u}}+(-\overrightarrow{\mathbf{u}})=\overrightarrow{\mathbf{0}}$
6. $c \vec{u} \in V$
7. $c(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})=c \overrightarrow{\mathbf{u}}+c \overrightarrow{\mathbf{v}}$
8. $(c+d) \overrightarrow{\mathbf{u}}=c \overrightarrow{\mathbf{u}}+d \overrightarrow{\mathbf{u}}$
9. $c(d \overrightarrow{\mathbf{u}})=(c d) \overrightarrow{\mathbf{u}}$
10. $1 \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}$
