Let $A=\left[\begin{array}{ccccccc}1 & -3 & 0 & -1 & 3 & -3 & 0 \\ 3 & -3 & 2 & -2 & 2 & -1 & -2 \\ -3 & 3 & 3 & 2 & 1 & 0 & -2 \\ 0 & -2 & -3 & 2 & 2 & 3 & 3\end{array}\right]$

Download the Mathematica notebook for today from the course webpage

1. What is $\operatorname{rank}(A)$?
2. Find the singular value decomposition for A and verify that $A=U \Sigma V^{\top}$
3. Find the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ of $A^{\top} A$
4. Verify that the non-zero singular values of A appear in Σ. How many are there?
5. Verify that $\overrightarrow{\mathbf{v}_{1}}$, the first column of V, is an eigenvector of $A^{\top} A$ corresponding to λ_{1}
6. Verify that the first column of U is $A \overrightarrow{\mathbf{v}_{1}}$ normalized to have length 1
