Let
$$A = \begin{bmatrix} 1 & -3 & 0 & -1 & 3 & -3 & 0 \\ 3 & -3 & 2 & -2 & 2 & -1 & -2 \\ -3 & 3 & 3 & 2 & 1 & 0 & -2 \\ 0 & -2 & -3 & 2 & 2 & 3 & 3 \end{bmatrix}$$

Download the Mathematica notebook for today from the course webpage

- 1. What is rank(A)?
- 2. Find the singular value decomposition for A and verify that $A = U \Sigma V^T$
- 3. Find the eigenvalues $\lambda_1, \lambda_2, \ldots$ of $A^T A$
- 4. Verify that the non-zero singular values of A appear in Σ . How many are there?
- 5. Verify that $\vec{v_1}$, the first column of V, is an eigenvector of $A^T A$ corresponding to λ_1
- 6. Verify that the first column of U is $A\vec{v_1}$ normalized to have length 1