RATLIFF8102

If A is an $m \times n$ matrix, then $A^{\top} A$ is an $m \times m$ matrix
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Hmmmmm} .$. .

If A is an $m \times n$ matrix, then $A^{\top} A$ is an $n \times n$ symmetric matrix
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Hmmmmm} .$. .

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

If $\overrightarrow{\mathbf{u}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$ then $\overrightarrow{\mathbf{u}}^{T} \overrightarrow{\mathbf{v}}=$
(a) $\left[\begin{array}{lll}-2 & 3 & 1 \\ -4 & 6 & 2 \\ -6 & 9 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}-2 & -4 & -6 \\ 3 & 6 & 9 \\ 1 & 2 & 3\end{array}\right]$
(b) 7
(d) Is undefined
(e) None of the above

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

If $\overrightarrow{\mathbf{u}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$ then $\overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{u}}^{\top}=$
(a) $\left[\begin{array}{lll}-2 & 3 & 1 \\ -4 & 6 & 2 \\ -6 & 9 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}-2 & -4 & -6 \\ 3 & 6 & 9 \\ 1 & 2 & 3\end{array}\right]$
(b) 7
(d) Is undefined
(e) None of the above

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

If $P=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$ and $D=\left[\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right]$ then $D P=$
(a) $\left[\begin{array}{ll}-2 & 12 \\ -4 & 15\end{array}\right]$
(c) $\left[\begin{array}{cc}-2 & -8 \\ 6 & 15\end{array}\right]$
(b) $\left[\begin{array}{c}-10 \\ 21\end{array}\right]$
(d) Is undefined
(e) None of the above

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

If $P=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$ and $D=\left[\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right]$ then $P D=$
(a) $\left[\begin{array}{ll}-2 & 12 \\ -4 & 15\end{array}\right]$
(c) $\left[\begin{array}{cc}-2 & -8 \\ 6 & 15\end{array}\right]$
(b) $\left[\begin{array}{c}-10 \\ 21\end{array}\right]$
(d) Is undefined
(e) None of the above

Let $A=\left[\begin{array}{rrr}-2 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & -4 & 1\end{array}\right]$

1. Find an orthogonal diagonalization $A=P D P^{\top}$
2. Write $P=\left[\begin{array}{lll}\overrightarrow{\mathbf{u}_{1}} & \overrightarrow{\mathbf{u}_{2}} & \overrightarrow{\mathbf{u}_{3}}\end{array}\right]$ and let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the entries on the diagonal of D (a) Compute $\lambda_{1} \overrightarrow{\mathbf{u}_{1}} \overrightarrow{\mathbf{u}_{1}}, \quad \lambda_{2} \overrightarrow{\mathbf{u}_{2}} \overrightarrow{\mathbf{u}_{2}}$, and $\lambda_{3} \overrightarrow{\mathbf{u}_{3}} \overrightarrow{\mathbf{u}_{3}}{ }^{\top}$
(b) Sum the three matrices from part (a)
