

If A is an $m \times n$ matrix, then $A^T A$ is an $m \times m$ matrix

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmmmm...

If A is an $m \times n$ matrix, then $A^T A$ is an $n \times n$ symmetric matrix

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmmmm...

If
$$\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$ then $\vec{\mathbf{u}}^T \vec{\mathbf{v}} =$

(a)
$$\begin{bmatrix} -2 & 3 & 1 \\ -4 & 6 & 2 \\ -6 & 9 & 3 \end{bmatrix}$$
(b) 7

(c)
$$\begin{bmatrix} -2 & -4 & -6 \\ 3 & 6 & 9 \\ 1 & 2 & 3 \end{bmatrix}$$

(d) Is undefined

If
$$\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$ then $\vec{\mathbf{v}} \ \vec{\mathbf{u}}^T =$

(a)
$$\begin{bmatrix} -2 & 3 & 1 \\ -4 & 6 & 2 \\ -6 & 9 & 3 \end{bmatrix}$$
(b) 7

(c)
$$\begin{bmatrix} -2 & -4 & -6 \\ 3 & 6 & 9 \\ 1 & 2 & 3 \end{bmatrix}$$

(d) Is undefined

If
$$P = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$$
 and $D = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$ then $DP =$
(a) $\begin{bmatrix} -2 & 12 \\ -4 & 15 \end{bmatrix}$ (c)
(b) $\begin{bmatrix} -10 \\ 21 \end{bmatrix}$ (d) I
(e) N

(c)
$$\begin{bmatrix} -2 & -8 \\ 6 & 15 \end{bmatrix}$$

(d) Is undefined

(c)
$$\begin{bmatrix} -2 & -8 \\ 6 & 15 \end{bmatrix}$$

(d) Is undefined

$$\operatorname{Let} A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & -4 & 1 \end{bmatrix}$$

1. Find an orthogonal diagonalization $A = PDP^{T}$

2. Write $P = \begin{bmatrix} \vec{u_1} & \vec{u_2} & \vec{u_3} \end{bmatrix}$ and let $\lambda_1, \lambda_2, \lambda_3$ be the entries on the diagonal of D(a) Compute $\lambda_1 \vec{u_1} \vec{u_1}^T$, $\lambda_2 \vec{u_2} \vec{u_2}^T$, and $\lambda_3 \vec{u_3} \vec{u_3}^T$

(b) Sum the three matrices from part (a)