Diagonalizable:

A square matrix A is diagonalizable iff we can write $A=P D P^{-1}$ where D is diagonal.

Theorem 5.5:

A is diagonalizable iff A has n linearly independent eigenvectors.
In particular, if $A=P D P^{-1}$ then the columns in P are n linearly independent eigenvectors of A and the entries in the diagonal of D are the corresponding eigenvalues of A.

Theorem 5.6:
If A is $n \times n$ with n distinct eigenvalues, then A is diagonalizable.

Theorem 7.1:

If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Orthogonally Diagonalizable

An $n \times n$ matrix A is orthogonally diagonalizable iff there is an orthogonal matrix P (so $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
A=P D P^{-1}=P D P^{T}
$$

Theorem 7.2:

An $n \times n$ matrix A is orthogonally diagonalizable iff A is a symmetric matrix.

Theorem 7.3: The Spectral Theorem for Symmetric Matrices
An $n \times n$ symmetric matrix A has the following properties:
a. A has n real eigenvalues, counting multiplicities.
b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
c. The eigenspaces are mutually orthogonal.
d. A is orthogonally diagonalizable.

Spectral Decomposition for Symmetric Matrices:
If A is an $n \times n$ symmetric matrix with orthonormal eigenvectors $\overrightarrow{\mathbf{u}}_{1}, \overrightarrow{\mathbf{u}}_{2}, \ldots, \overrightarrow{\mathbf{u}}_{\mathbf{n}}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the spectral decomposition of A is

$$
A=\lambda_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{T}+\lambda_{2} \overrightarrow{\mathbf{u}}_{2} \overrightarrow{\mathbf{u}}_{2}^{T}+\cdots+\lambda_{n} \overrightarrow{\mathbf{u}}_{\mathrm{n}} \overrightarrow{\mathbf{u}}_{\mathrm{n}}^{T}
$$

Singular Values of an $m \times n$ Matrix:

Let A be an $m \times n$ matrix. Then $A^{T} A$ is an $n \times n$ symmetric matrix.
The eigenvalues of $A^{T} A$ are all nonnegative. Reorder so that the eigenvalues are ordered

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0
$$

The singular values of A are the square roots of the eigenvalues of $A^{T} A$:

$$
\sigma_{1}=\sqrt{\lambda_{1}} \geq \sigma_{2}=\sqrt{\lambda_{2}} \geq \cdots \geq \sigma_{n}=\sqrt{\lambda_{n}}
$$

Singular value decomposition:

Let A be an $m \times n$ matrix with rank r. Then there exists

- an $m \times n$ matrix $\Sigma=\left[\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right]$ where D is an $r \times r$ diagonal matrix with the first r singular values of A,

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

on its diagonal,

- an $m \times m$ orthogonal matrix U, and
- an $n \times n$ orthogonal matrix V
such that

$$
A=U \Sigma V^{T}
$$

