1. (a) Find the best fit line $y=m x+b$ for the data points

| $x$ | 1 | 1.5 | 2 | 3 | 3.1 | 3.2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 8 | 9 | 15 | 10 | 18 | 23 | 19 |

(b) Use the site
https://www.socscistatistics.com/tests/regression/ to find the least squares regression line for this data. Compare your answer to part (a).
2. Let $A=\left[\begin{array}{cc}1 & -18 \\ -3 & 4\end{array}\right], \overrightarrow{\mathbf{v}_{\mathbf{1}}}=\left[\begin{array}{c}-2 \\ 1\end{array}\right], \overrightarrow{\mathbf{v}_{\mathbf{2}}}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \lambda_{1}=10, \lambda_{2}=-5$
(a) Show that $A$ has eigenvalues $\lambda_{1}, \lambda_{2}$ with corresponding eigenvectors $\overrightarrow{\mathbf{v}_{1}}, \overrightarrow{\mathbf{v}_{2}}$
(b) Let $P=\left[\overrightarrow{\mathbf{v}_{\mathbf{1}}} \overrightarrow{\mathbf{\mathbf { V } _ { \mathbf { 2 } }}}\right]$, the $2 \times 2$ matrix with columns $\overrightarrow{\mathbf{v}_{\mathbf{1}}}$ and $\overrightarrow{\mathbf{v}_{\mathbf{2}}}$. Compute $A P$
(c) Let $D$ be the $2 \times 2$ diagonal matrix with $\lambda_{1}$ and $\lambda_{2}$ on the diagonal. Compute $P D$
(d) Compute $P D P^{-1}$. Ponder

