

1. Show that $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is inconsistent
2. (a) Use the Mathematica command Orthogonalize[] to find an orthogonal basis for $\operatorname{col}(A)$
(b) Use the Orthogonal Decomposition Theorem to find $\hat{\mathbf{b}}$, the projection of $\overrightarrow{\mathbf{b}}$ onto $\operatorname{col}(A)$
(c) Verify that $\overrightarrow{\mathbf{z}}=\overrightarrow{\mathbf{b}}-\hat{\mathbf{b}}$ is orthogonal to both columns of A.
3. Solve $A \overrightarrow{\mathbf{x}}=\hat{\mathbf{b}}$

Consider the following data points:

x	-2	-1	1	2	4
y	-43	-2	2	-11	-187

4. Show that there is no cubic polynomial $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ that passes through all of these points.
5. Find the best-fit cubic $\hat{p}(t)$
6. Graph the points and $\hat{p}(t)$ to verify your answer
