1. Verify that $\mathcal{B}=\left\{\overrightarrow{\mathbf{u}_{1}}, \overrightarrow{\mathbf{u}_{\mathbf{2}}}, \overrightarrow{\mathbf{u}_{\mathbf{3}}}\right\}$ is an orthogonal basis for \mathbb{R}^{3}
2. Find $\hat{y_{1}}$, the orthogonal projection of $\overrightarrow{\boldsymbol{y}}$ onto $\overrightarrow{\mathbf{u}_{1}}$ $\hat{y_{2}}$, the orthogonal projection of $\overrightarrow{\boldsymbol{y}}$ onto $\overrightarrow{\mathbf{u}_{2}}$ $\hat{y_{3}}$, the orthogonal projection of $\overrightarrow{\boldsymbol{y}}$ onto $\overrightarrow{\boldsymbol{u}_{3}}$
3. Write $\overrightarrow{\boldsymbol{y}}$ as a linear combination of $\overrightarrow{\mathbf{u}_{\mathbf{1}}}, \overrightarrow{\mathbf{u}_{2}}, \overrightarrow{\mathbf{u}_{3}}$
4. Form the matrix $A=\left[\begin{array}{lll}\overrightarrow{\mathbf{u}_{1}} & \overrightarrow{\mathbf{u}_{2}} & \overrightarrow{\mathbf{u}_{3}}\end{array}\right]$, and calculate $A^{T} A$
