RATLIFF8102

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$. Then $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is an eigenvector of A
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

RATLIFF8102

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$. Then $\lambda=3$ is an eigenvalue of A
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Errr. . .

$$
\text { Let } B=\left[\begin{array}{rrr}
75 / 100 & 15 / 100 & 5 / 100 \\
15 / 100 & 80 / 100 & 10 / 100 \\
10 / 100 & 5 / 100 & 85 / 100
\end{array}\right]
$$

1. For B, find
(a) The characteristic polynomial
(b) The eigenvalues
(c) The corresponding eigenvectors
2. Repeat for $\operatorname{ref}(B)$

Theorem 5.2: If $\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \ldots, \overrightarrow{\mathbf{v}}_{r}$ are eigenvectors of A corresponding to distinct eigen-

 values $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{r}\right\}$ is linearly independent.Proof: Suppose $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{r}}}\right\}$ is a linearly dependent set.
We will show that we get a contradiction.

- Since the vectors are non-zero, we know that at least one must be a linear combination of the others.
- Let $p+1$ be the lowest index of a dependent vector so that $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{p}}}\right\}$ is linearly independent and

$$
c_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{v}_{\mathbf{p}+1}} \quad(*)
$$

- Multiply both sides by λ_{p+1} (we'll see why in a minute)

$$
c_{1} \lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} \lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} \lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{p}+\mathbf{1}}} \quad(* *)
$$

Theorem 5.2: If $\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \ldots, \overrightarrow{\mathbf{v}}_{r}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \ldots, \overrightarrow{\mathbf{v}}_{\mathbf{r}}\right\}$ is linearly independent.

$$
\begin{gathered}
c_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{v}_{\mathbf{p}+1}} \quad(*) \\
c_{1} \lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} \lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} \lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{p}+1}} \quad(* *)
\end{gathered}
$$

- Multiply both sides of (*) by A

$$
\begin{aligned}
c_{1} A \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} A \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} A \overrightarrow{\mathbf{v}_{\mathbf{p}}} & =A \overrightarrow{\mathbf{v}_{\mathbf{p}+\mathbf{1}}} \\
c_{1} \lambda_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} \lambda_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} \lambda_{p} \overrightarrow{\mathbf{v}_{\mathbf{p}}} & =\lambda_{p+1} \overrightarrow{\mathbf{v}_{\mathbf{p}+1}} \quad(* * *)
\end{aligned}
$$

- Subtract (**) from (***)

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

Theorem 5.2: If $\overrightarrow{\mathbf{v}}_{\mathbf{1}}, \ldots, \overrightarrow{\mathbf{v}}_{r}$ are eigenvectors of A corresponding to distinct eigen-

 values $\lambda_{1}, \ldots, \lambda_{r}$, then the set $\left\{\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{r}\right\}$ is linearly independent.$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{0}}
$$

- But $\lambda_{i}-\lambda_{p+1} \neq 0$ since the eigenvalues are distinct and $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{p}}}\right\}$ is a linearly independent set, giving that

$$
c_{1}=c_{2}=\cdots=c_{p}=0
$$

- Since

$$
c_{1} \overrightarrow{\mathbf{v}_{\mathbf{1}}}+c_{2} \overrightarrow{\mathbf{v}_{\mathbf{2}}}+\cdots+c_{p} \overrightarrow{\mathbf{v}_{\mathbf{p}}}=\overrightarrow{\mathbf{v}_{\mathbf{p}+\mathbf{1}}} \quad(*)
$$

this contradicts that $\overrightarrow{\mathbf{v}_{\mathbf{p}+1}}$ is non-zero.
Therefore, $\left\{\overrightarrow{\mathbf{v}_{\mathbf{1}}}, \ldots, \overrightarrow{\mathbf{v}_{\mathbf{r}}}\right\}$ are linearly independent.

