From Lay, Section 1.2

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):
4. The leading entry in each nonzero row is 1 .
5. Each leading 1 is the only nonzero entry in its column.

$$
\begin{aligned}
& \text { Echelon Form } \\
& {\left[\begin{array}{cccc}
3 & -6 & 0 & 4 \\
0 & 0 & 5 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

RATLIFF8102

$\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 3 & 5 \\ 0 & 2 & 1\end{array}\right]$ is in echelon form
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Hmm. .

RATLIFF8102

$\left[\begin{array}{ccccc}1 & 0 & 0 & 1 & -7 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is in reduced echelon form
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Hmm. . .

From Lay, Section 1.2

DEFINITION
A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.

From Lay, Section 1.2

Variables that correspond to a pivot column are called basic variables, and variables that do not correspond to a pivot column are called free variables.

Augmented matrix from \#6 on Tuesday:

$$
A=\left[\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
1 & 2 & 1 & 3 \\
2 & 3 & 2 & 5
\end{array}\right] \quad \xrightarrow[\text { form }]{\text { reduced echelon }}\left[\begin{array}{lll|l}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{1} and x_{2} are basic variables
x_{3} is a free variable

1. Find the general solutions of the system whose augmented matrix is

$$
\left[\begin{array}{rrrrr|r}
2 & -8 & 0 & 1 & -1 & 4 \\
-4 & 16 & 3 & -2 & 17 & -14 \\
6 & -24 & 0 & 5 & 3 & 16
\end{array}\right]
$$

2. Let $\vec{u}=\langle 1,2,-1\rangle, \vec{v}=\langle-3,1,5\rangle$

(a) Does $\overrightarrow{\mathbf{w}}=\langle 7,0,2\rangle$ lie in $\operatorname{Span}\{\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}\}$?
(b) What does this tell you about the lines

$$
x-3 y=7, \quad 2 x+y=0, \quad \text { and } \quad-x+5 y=2 ?
$$

