Problem Set \#7

Due Thursday, April 28, 2022 @ 11:59 pm Submit as single pdf file to onCourse

Remember that you need to explain and show the steps in your answers!

1. (a) Evaluate the integral $\int f(x) d x=\int \cos (x) \sqrt{\sin (x)+3} d x$
(b) Graph your antiderivative $F(x)$ and the integrand $f(x)$ on the same set of axes to verify that your antiderivative is correct. Include a copy of your graph, either as a sketch or by exporting from Desmos or another graphing utility.
(c) Also verify that your antiderivative $F(x)$ is correct by taking its derivative and comparing to $f(x)$.

General tip: It's a good habit to always do parts (b) \& (c) to verify that your antiderivative is correct!
2. (a) Evaluate $\int_{-1}^{3} \frac{1+5 x}{1+2 x+5 x^{2}} d x$
(b) Graph the integrand on the interval [-1,3]. Does your answer from part (a) make sense? Include a copy of your graph, either as a sketch or by exporting from Desmos or another graphing utility.
3. Evaluate $\int 2 x \sin \left(x^{2}-2\right) e^{\cos \left(x^{2}-2\right)} d x$.
4. (a) Evaluate $\int 2 \cos (x) \sin (x) d x$ using substitution with $u=\sin (x)$.
(b) Evaluate $\int 2 \cos (x) \sin (x) d x$ using substitution with $u=\cos (x)$.
(c) One consequence of the Mean Value Theorem is that any two antiderivatives of the same function are supposed to differ by a constant.
Look at your answers to parts (a) and (b). Why don't your answers contradict this result?

