## Problem Set \#5

Due Thursday, March 24, 2022 @ 11:59 pm
Submit as single pdf file to onCourse
Remember that you need to explain and show the steps in your answers!

1. Let $g(x)=\cos (2 x)+\sin (2 x)$
(a) Verify that $g(x)$ has critical numbers at $x=\frac{5 \pi}{8}$ and $x=\frac{9 \pi}{8}$

Note: These are not all of the critical numbers of $g(x)$, just two of them.
(b) Use the Second Derivative Test to classify each critical number as a local min or local max, if possible.
2. The graph of $f^{\prime \prime}(x)$ shown below. This is not the graph of $f(x)$ or $f^{\prime}(x)$ !
(a) Where is $f$ concave up? concave down?
(b) Where does $f$ have inflection points?
(c) Suppose that $f^{\prime}(-1)=0$ and $f^{\prime}(1)=0$.

If possible, classify $x=-1$ and $x=1$ as local maxima or local minima of $f$.


Plot of $y=f^{\prime \prime}(x)$
3. Use the graph of $y=f^{\prime \prime}(x)$ from \#2 to answer the following.
(a) Suppose that $f^{\prime}(0)=0$. Is $f$ increasing or decreasing at $x=2$ ? at $x=-1$ ? Why?
(b) Suppose that $f^{\prime}(0)=-1$ and $f(0)=1$. Is it possible that $f(2)=3$ ? Explain.

Hint: Can you determine if $f$ is increasing or decreasing on $[0,2]$ ?
4. Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}$
(b) $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}$
(c) $\lim _{x \rightarrow 0} \frac{\cos (x)}{x-1}$

