Problem Set \#4

Due Thursday, March 10, 2022 @ 11:59 pm
Submit as single pdf file to onCourse
Remember that you need to explain and show the steps in your answers!

1. Let $h(x)=x \sqrt[3]{9-x^{2}}$
(a) What are the critical numbers of $h(x)$? (Hint: There are four.)
(b) Find the maximum and minimum values that $h(x)$ obtains on the interval $[0,4]$. Be sure to specify the x-values that determine the max and min.
2. Find the point on the portion of the parabola $y=x^{2}-8 x+18$ with $3 \leq x \leq 6$ that is closest to the origin.
3. Let $f(x)=2 x e^{x}+x^{2} e^{x}$
(a) Find one antiderivative $F(x)$ of $f(x)$. (Hint: Think of undoing the product rule.)
(b) Demonstrate that your answer to part (a) is correct by showing that $F^{\prime}(x)=f(x)$.
(c) What is the form of every antiderivative of $f(x)$? Why?
4. Let $g(x)=x^{5}-3 x^{3}$. Find the critical numbers of $g(x)$ and use the First Derivative Test to classify each as a local max, local min, or neither.
