1. The graph of $f^{\prime}(x)$ shown at the right.

This is not the graph of $f(x)$!
(a) Where does f have critical points?
(b) On which intervals is f increasing? decreasing?

(c) Where does f achieve local maxima? local minima?

Plot of $y=f^{\prime}(x)$
(d) Where is f concave up? concave down?
(e) Where does f have inflection points?
(f) Suppose that $f(0)=0$. Sketch a graph of f.

(g) How does the graph change if $f(0)=3$?
2. The graph of $f^{\prime \prime}(x)$ shown at the right. This is not the graph of $f(x)$ or $f^{\prime}(x)$!
(a) Where is f concave up? concave down?
(b) Where does f have inflection points?
(c) Suppose that $f^{\prime}(-1)=0$ and $f^{\prime}(1)=0$.

If possible, classify $x=-1$ and $x=1$ as local maxima or local minima of f.

(d) Suppose that $f^{\prime}(0)=0$. Is f increasing or decreasing at $x=1$? at $x=-1$?
(e) Suppose that $f^{\prime}(-1)=-2$ and $f(-1)=2$. Could $f(0)=3$?

Hint: Can you determine if f is increasing or decreasing on $[-1,0]$?

