The derivative as a rate function

If $f(x)$ is a function, then the derivative of f is a new function f^{\prime}.
The derivative is defined by $f^{\prime}(x)$ is the instantaneous rate of change of f at x.

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

Plot of $y=f(x)$)

The derivative of f is positive at $x=2.5$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Ummmm ...

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

Plot of $y=f(x)$)

The derivative of f is negative at $x=-3$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Ummmm} \ldots$

RATLIFF8102

b.socrative.com/login/student/ or Socrative app

Plot of $y=f(x)$)
f^{\prime} is zero three times on $-4 \leq x \leq 4$
(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Ummmm ...

The graph of $y=g(x)$ is show below

1. Where is $g^{\prime}(x)=0$?
2. On what intervals is $g(x)$ increasing? decreasing?
3. Use this information to sketch a graph of $y=g^{\prime}(x)$

Graph of $y=h^{\prime}(x)$
Notice this is the graph of the derivative, not of $h(x)$!

1. Where is $h(x)$ increasing? decreasing?
2. Sketch the graph of $y=h(x)$
3. Is the second derivative of $h(x)$ positive or negative at $x=2$?
4. If $j(x)=h(x)+3$, how is the graph of $y=j^{\prime}(x)$ related to the graph of $y=h^{\prime}(x)$?

Reminders

- PCA due Sunday @ midnight
- WeBWorK \& WeBWorK journal due Monday @ midnight
- See you in person on Monday!

