The Chain Rule

If f and g are well-behaved functions, then

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

or

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

The Chain Rule

If f and g are well-behaved functions, then

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

or

$$
\left(f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Example: Let $h(x)=\left(x^{2}+2 x\right)^{4}$. What is $h^{\prime}(x)$?

Example: $f(x)=\sin \left(x^{2}\right)$. What is $f^{\prime}(x)$?

Let $f(x)=2^{x}$. What is $f^{\prime}(x)$?

Summary of derivatives we know thus far

$$
\begin{array}{ll}
\frac{d}{d x} x^{n}=n x^{n-1} & \frac{d}{d x} e^{x}=e^{x} \\
\frac{d}{d x} \sin (x)=\cos (x) & \frac{d}{d x} \ln (x)=\frac{1}{x} \\
\frac{d}{d x} \cos (x)=-\sin (x) & \\
(u v)^{\prime}=u^{\prime} v+u v^{\prime} & \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x) &
\end{array}
$$

Find the derivative of each function

1. $f(x)=\left(3 x^{2}+2\right)^{14}$
2. $f(x)=(\sin (x))^{3}$
3. $f(x)=x^{2} \sin \left(x^{3}\right)$
4. $f(x)=\sqrt{\ln \left(x^{2}+2 x\right)}$

Find the derivative of each function

5. $f(x)=\tan (x)$ Hint: $\tan (x)=\frac{\sin (x)}{\cos (x)}$
6. $f(x)=\sec (x)$ Hint: $\sec (x)=\frac{1}{\cos (x)}$
7. $f(x)=\tan (\ln (x))$
8. $f(x)=\ln (\cos (x))$
