Why the product rule is true:

$$
\begin{aligned}
& \frac{d}{d x}(f(x) g(x)) \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
= & \lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\frac{f(x) g(x+h)-f(x) g(x)}{h}\right) \\
= & \lim _{h \rightarrow 0}\left(\left[\frac{f(x+h)-f(x)}{h}\right] g(x+h)+f(x)\left[\frac{g(x+h)-g(x)}{h}\right]\right) \\
= & f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

Why the quotient rule is true:

Let $h(x)=\frac{f(x)}{g(x)}$. We want to find $h^{\prime}(x)$

$$
\begin{aligned}
f(x) & =g(x) h(x) \\
\Rightarrow \quad f^{\prime} & =g^{\prime} h+g h^{\prime} \quad \text { by the Product Rule } \\
f^{\prime} & =g^{\prime}\left(\frac{f}{g}\right)+g h^{\prime} \\
f^{\prime} g & =g^{\prime} f+g^{2} h^{\prime} \\
f^{\prime} g-g^{\prime} f & =g^{2} h^{\prime} \\
h^{\prime} & =\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
\end{aligned}
$$

1. Find the derivative of each function
(a) $h(x)=x^{32} \ln (x)$
(b) $h(x)=\sqrt{x}\left(\ln (x)+\frac{2}{x^{3}}\right)$
(c) $h(x)=\frac{3+2 x^{-3}}{8 x^{3}-4 x}$
(d) $h(x)=x \ln (x)-x$
2. Find an antiderivative for each function
(a) $f(x)=2 x \sin (x)+x^{2} \cos (x)$
(b) $f(x)=\ln (x)+\frac{1}{x}$
