1. Let $f(x)=\sin (x)+6 \sqrt[3]{x}-\frac{1}{x}+3 e^{x}$
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$
(b) Find an antiderivative of $f(x)$. That is, a function $F(x)$ where $F^{\prime}(x)=f(x)$
2. Let $g(x)=2 \cos (x)-\ln (x)$
(a) Find $g^{\prime}(x)$ and $g^{\prime \prime}(x)$
(b) Apply the IVT to $g^{\prime}(x)$ to show that $g^{\prime}(x)$ has a root between $x=2$ and $x=4$
(c) Use your answer to (b) to show that $g(x)$ has a local minimum between $x=2$ and $x=4$
3. How can you find the value of $\sin (3)$?

If we can find the line tangent to $y=\sin (x)$ at a point near $x=3$, we can use this line to approximate $\sin (3)$ since $f(x)=\sin (x)$ is locally linear
(a) Find the equation of the line tangent to $y=\sin (x)$ at $x=\pi$
(b) Use your tangent line to approximate $\sin (3)$
(c) Use your tangent line to approximate $\sin (7)$. Is this a good approximation?
4. Use that $g(x)=\cos (x)$ is locally linear to approximate $\cos (4)$

Hint: Find a value x_{0} close to $x=4$ where you know both $g\left(x_{0}\right)$ and $g^{\prime}\left(x_{0}\right)$

