1. The graphs of f, f^{\prime}, and $f^{\prime \prime}$ are shown below on the same set of axes.

Label each on the graph and explain your answers.

2. Suppose that the graph labeled C on the left graph in \#1 is the graph of $g^{\prime}(x)$.
(a) Is g concave up or concave down at $x=-1$?
(b) Find all critical points of g and label them as local maxima, local minima, or neither.
(c) Suppose $g(-2)=5$. Could $g(1)=0$? Could $g(1)=10$?
3. Suppose that the graph labeled B on the right graph in \#1 is the graph of $h^{\prime \prime}(x)$.
(a) What are the inflection points of h ?
(b) If the critical points of h are $x=-3, x=-1$, and $x=2$, use the Second Derivative Test to classify each as a local maxima or local minima, if possible.
4. Evaluate the following limits. Be sure to explain your answers.
(a) $\lim _{x \rightarrow \infty} x^{2} e^{-3 x}$
(b) $\lim _{x \rightarrow \infty} \frac{\ln (x)}{\cos (3 x)+5}$
5. Let $f(x)=3 x^{5}-25 x^{3}+7$
(a) Find all critical points of f and classify them as local maxima, local minima, or neither.
(b) On which intervals is f increasing? Decreasing?
(c) Find the inflection points of f.
(d) On which intervals is f concave up? Concave down?
(e) Use this information to sketch a graph of $y=f(x)$.
6. Verify that $F(x)=e^{x} x-e^{x}+3$ is an antiderivative of $f(x)=x e^{x}$.

What important fact does the Mean Value Theorem tell us about any other antiderivative of f ?
7. Why do we use radians to measure angles in calculus rather than degrees?
8. Let $f(x)=e^{x}$.
(a) Find the equation of the line tangent to $y=f(x)$ at $x=0$. Use this to approximate e.
(b) What is the fifth degree Maclaurin polynomial of $f(x)$? Use it to approximate e.
(c) Which approximation do you think will be more accurate? Why?
9. Let $g(x)=\sin \left(x^{3}\right)$. What is $g^{(5)}(0) ? g^{(9)}(0) ? g^{(100)}(0)$? $g^{(123)}(0)$?

Be sure to justify your answers.

