1. Let $p=11$
(a) What are the possible orders for elements in \mathbb{Z}_{p}^{*} ?
(b) Find a generator a of \mathbb{Z}_{p}^{*}.
(c) Fill in the following table:

| k | $a^{k} \bmod p$ | $\operatorname{ord}\left(a^{k}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | | |
| 2 | | |
| \vdots | | |
| $p-1$ | | |

(d) For which values of k is a^{k} a generator?
(e) How are the values in your last answer related to $\phi(p-1)$?
(f) How many generators does \mathbb{Z}_{p}^{*} have?
(g) What is a desirable order of α for DHKE using modulus p ? What is a desirable value of α for DHKE using modulus p ?
2. Repeat the previous problem with $p=23$.

Note that your table will have 22 rows.
The Mathematica command MultiplicativeOrder[] might be handy.
3. Show that $p=1786511$ is a poor choice as the modulus for DHKE. The Mathematica commands PrimeQ[] and FactorInteger[] may be useful.
4. Show that $p=1786553$ is a reasonable choice for DHKE and find an appropriate value α.
5. Go to https://www.rfc-editor.org/rfc/rfc3526 and verify that the given values for the 2048-bit prime and α are reasonable choices for DHKE.

Note that when this page says "The generator is: 2 ", it does not mean that 2 is a generator of \mathbb{Z}_{p}^{*}, but rather that $\alpha=2$ is a good choice for Diffie-Hellman.

