## Digital Signature Algorithm, 160-bit

## Key creation - Alice

- Find 1024-bit prime $p$, 160-bit prime $q$ where $q$ divides $p-1$
- Find $\alpha \in \mathbb{Z}_{p}^{*}$ where $\operatorname{ord}(\alpha)=q$
- Choose private $d$ where $0<d<q$ Compute $\beta \equiv \alpha^{d} \bmod p$
- Publish ( $p, q, \alpha, \beta$ )


## Sign message $x$ - Alice

- Choose ephemeral $k_{E}$ where $0<k_{E}<q$
- Compute

$$
\begin{aligned}
& r \equiv\left(\alpha^{k_{E}} \bmod p\right) \quad \bmod q \\
& s \equiv(\mathrm{SHA}(x)+d r) k_{E}^{-1} \bmod q
\end{aligned}
$$

- Send $(x,(r, s))$


## Verify signature - Bob

- Compute

$$
\begin{aligned}
& w \equiv s^{-1} \bmod q \\
& u_{1} \equiv w \cdot \mathrm{SHA}(x) \bmod q \\
& u_{2} \equiv w \cdot r \bmod q \\
& v \equiv\left(\alpha^{u_{1}} \beta^{u_{2}} \bmod p\right) \quad \bmod q
\end{aligned}
$$

- If $v=r$ then valid

If $v \neq r$ then invalid

## Use Hash[x, "SHA3-256"] for the hash function in our small DSA

1. Alice publishes $(p, q, \alpha, \beta)=(241553623,13033,52824,238101207)$
(a) Verify that $p, q$ and $\alpha$ are reasonable choices for our small version of DSA.
(b) Which, if any, of the following are valid DSA signatures?
(i) $(x,(r, s))=($ "Argybargy", $(5105,11671))$
(ii) $(x,(r, s))=($ "Pleased to Meet Me", $(9543,3174))$
2. You want to use our small version of DSA to sign the message "My cabbages!"
using values of $p=2738078$ 869, $\quad q=65323, \quad$ and $\alpha=11208$
(a) Verify that $p, q$ and $\alpha$ are reasonable choices for our small DSA.
(b) Use $d=17132$ to compute your value for $\beta$.
(c) Use a value of $k_{E}=41821$ to sign your message.
