The Mathematica notebook posted for today will definitely be useful.

1. The purpose of this exercise is to verify that Pollard's ρ will give a collision at $x_i = x_{2i}$. Consider the function $f: \mathbb{Z}/85\mathbb{Z} \to \mathbb{Z}/85\mathbb{Z}$ defined by $f(x) = 5x \mod 85$ and the sequence $\{x_i\}$ formed by $x_0 = 1$, $x_{i+1} = f(x_i)$

Week 6 Tutorial

- (a) What are the first 4 terms in the sequence?
- (b) Use the Mathematica notebook to list the first 40 terms of the sequence.
- (c) What is *T*, the length of the tail? What is *M*, the length of the loop?
- (d) What is the value of x_M ? Of x_{2M} ?
- 2. Consider applying Pollard's ρ to the DLP $196^x \equiv 787 \mod 1031$
 - (a) What is the mixing function f(x) in this case?
 - (b) Fill in the values for the x_1 and y_1 terms in the sequences. Also verify that the values for x_2 and y_2 are correct.

i	x_i	α_i	eta_i	y_i	γ_i	δ_i
0	1	0	0	1	0	0
1						
2	269	2	0	191	4	0

- (c) Use the pollards Rho[] function defined in the Mathematica notebook to find the collision $x_i = y_i$
- (d) Now finish solving the DLP.
- 3. Use Pollard's ρ to solve the DLP $2^x \equiv 157\,602 \mod 1\,904\,027$ Feel free to use the Mathematica notebook.

T. Ratliff March 8, 2021