- 1. Solve $4^x \equiv 28 \mod 37$ by hand using Shanks algorithm. You can use Mathematica to calculate multiplicative orders and to perform modular multiplication.
- 2. Download the Mathematica notebook for today, and use it and Shanks to solve the following DLPs. How long are your lists in each case?
 - (a) $4^x \equiv 28 \mod 37$
 - (b) $6^x \equiv 5660 \mod 7951$
 - (c) $637\,239\,129^x \equiv 182\,583\,899 \mod 2\,043\,290\,489$
- 3. Use the Chinese Remainder Theorem to solve the following system:

$$x \equiv 6 \mod 7$$
$$x \equiv 4 \mod 8$$
$$x \equiv 10 \mod 15$$

- 4. The point of this problem is to illustrate the utility of Exercise 1.33 from Problem Set #1, which asked you to consider elements $a \in \mathbb{F}_p^*$ and $b \equiv a^{(p-1)/q} \mod p$.
 - (a) i. Let p = 13 and q = 3. Notice that p and q are primes where $q \mid (p 1)$. Using these values of p and q, form the list of 12 elements

 $\{b_1, b_2, \dots, b_{12}\}$ where $b_a \equiv a^{(p-1)/q} \mod p$

Notice there will be some repeat elements in this list.

- ii. Now form the list $\{\operatorname{ord}(b_1), \operatorname{ord}(b_2), \ldots, \operatorname{ord}(b_{12})\}$
- iii. What is the probability that a randomly chosen value $a \in \mathbb{F}_{13}^*$ will produce an element $b \in \mathbb{F}_{13}^*$ such that $\operatorname{ord}(b) = q = 3$? Hint: It better be $\frac{q-1}{q} = \frac{2}{3}$ or else part b of the exercise is wrong!
- (b) Let p = 104759 and q = 52379. You may assume that both of these values are prime.

Find five elements of \mathbb{F}_p^* with order q by hand. i.e. no Mathematica, no WolframAlpha, no calculator, etc.