Announcements

- Tutorial Jamboards looked good
- Problem Set #1 due Thursday
- Notice my webpages now use https!

The Discrete Log Problem

Let g be a primitive root of \mathbb{F}_p and $h \in \mathbb{F}_p^*$

The **discrete logarithm problem (DLP)** is the problem of finding an x such that

$$g^{x} \equiv h \mod p$$

Then x is called the discrete log of h base g

If g has large order, then exponentiation mod p mixes really well

Math 302 Adv Crypto (T. Ratliff) February 15, 2021 3

If g has large order, then exponentiation mod p mixes really well

Recall Diffie-Hellman Key Exchange

Trusted publishes p and $g \in \mathbb{F}_p^*$ of large prime order

- Alice picks secret $a \in \mathbb{Z}$, sends $A \equiv g^a \mod p$ to Bob Bob picks secret $b \in \mathbb{Z}$, sends $B \equiv g^b \mod p$ to Alice
- Alice computes $A' \equiv B^a \mod p$ Bob computes $B' \equiv A^b \mod p$
- Shared key is A' = B'

The Diffie-Hellman Problem

Let p be prime and g an integer. The **Diffie-Hellman Problem (DHP)** is the problem of finding

$$A' = B' = g^{ab} \mod p$$

from the known values $A = g^a \mod p$ and $B = g^b \mod p$

Defintion of a group

A **group** consists of a set G and a rule \star , for combining two elements $a, b \in G$ to obtain $a \star b \in G$. In addition, \star must have the following three properties:

- **Identity Law:** There exists $e \in G$ such that $e \star a = a \star e = a$ for all $a \in G$
- Inverse Law: For every $a \in G$, there exists $a^{-1} \in G$ such that $a \star a^{-1} = a^{-1} \star a = e$
- Associative Law: $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$

Examples

- The **order** of a group G, denoted |G|, is the number of elements in G
- If $a \in G$, then the **order of** a is the smallest $d \in \mathbb{N}$ such that $a^d = e$. If there is no such d, then a has infinite order.

Proposition 2.13 (Corollary to Lagrange's Theorem)

Let G be a finite group of order n and $a \in G$ of order d. Then $d \mid n$.

 Math 302 Adv Crypto (T. Ratliff)
 February 15, 2021
 10

\mathcal{O} -Notation

Definition: Let f(x) and g(x) be functions of x such that $f(x), g(x) \ge 0$.

We say f is big- \mathcal{O} of g, denoted $f(x) = \mathcal{O}(g)$ if there exist positive constants c and C such that

$$f(x) \le cg(x)$$
 for all $x \ge C$

Proposition 2.14

If the limit
$$\lim_{x\to\infty}\frac{f(x)}{g(x)}$$
 exists and is finite, then $f=\mathcal{O}(g)$.