Announcements

- Kryptos?
- Read all the presentation abstracts before next Monday
- Will post Exam 3 next Thursday
 Expect 25% to be essay similar to last semester

Group Presentations next week!

- Presentation should be 13-16 minutes long
- Rubric in onCourse
- Tutorial participation for next week is filling out short evaluation for other presentations in onCourse
- Practice, practice!

Monday	Wednesday
David, Mike, Tyler	Jacob, Jonny, Katie
Andrew, Torin	Maggie, Jess
Alex, Ian, Jacob	Nate, Zach
Adam, Emily, Michael	

Recall from Feb 3: Big Picture of Course Content

- 1. Security of DHKE, DSA depend on DLP being hard to solve: $g^x \equiv h \mod p$ Are there non-brute force attacks?
 - Shanks Babystep-Giantstep algorithm
 Requires storing two lists, can become impractical
 - Pollig-Hellman algorithm Shows why we want α to have large prime order in \mathbb{Z}_p^*
 - Pollard's ρ is a general collision algorithm More efficient in storage than Shanks in storage, but runtime may be longer
- 2. RSA, DHKE, DSA depend on finding large primes
 - How do you do this?
 - Can apply Pollard's ρ to factor integers

Big Picture of Course Content (cont)

- 3. Elliptic curve cryptography requires dramatically smaller keys than RSA, DHKE, DSA for equivalent level of security

 How does this work?
- Security of these methods will fall apart when quantum computers are feasible
 Look at basis for lattice-based encryption schemes which have no known quantum attacks
- 5. Eight other topics from you!

Why is ECDLP harder than mod p DLP?

- There are algorithms faster than Shanks or Pollard's ρ for DLP that do not apply to ECDLP https://en.wikipedia.org/wiki/Discrete_logarithm_records
- This is why P-384 from exam is a safe curve for ECDHKE but a 384-bit prime for DHKE is not

Goldreich, Goldwasser, Halevi (GGH) Encryption, based on CVP

- Alice: Key creation
 - Pick good basis $\vec{v_1}, \dots, \vec{v_n}$ and put in rows of matrix V
 - Choose matrix U with integer coefficients such that $det(U) = \pm 1$
 - Compute bad basis as rows $\vec{w_1}, \dots, \vec{w_n}$ of W = UV
 - Publish public key $\vec{w_1}, \dots, \vec{w_n}$

Goldreich, Goldwasser, Halevi (GGH) Encryption, based on CVP

- Alice: Key creation
 - Pick good basis $\vec{v_1}, \dots, \vec{v_n}$ and put in rows of matrix V
 - Choose matrix U with integer coefficients such that $det(U) = \pm 1$
 - Compute bad basis as rows $\vec{w_1}, \dots, \vec{w_n}$ of W = UV
 - Publish public key $\vec{w_1}, \dots, \vec{w_n}$
- Bob: Encryption
 - Plaintext vector $\vec{m} = (m_1, \dots, m_n) \in \mathbb{Z}^n$
 - $\vec{v} = \vec{m}W = m_1\vec{w_1} + \cdots + m_n\vec{w_n} \in L$
 - Choose small random vector $\vec{r} \in \mathbb{R}^n$
 - Send ciphertext $\vec{e} = \vec{v} + \vec{r} \in \mathbb{R}^n$

Goldreich, Goldwasser, Halevi (GGH) Encryption, based on CVP

- Alice: Key creation
 - Pick good basis $\vec{v_1}, \dots, \vec{v_n}$ and put in rows of matrix V
 - Choose matrix U with integer coefficients such that $det(U) = \pm 1$
 - Compute bad basis as rows $\vec{w_1}, \dots, \vec{w_n}$ of W = UV
 - Publish public key $\vec{w_1}, \dots, \vec{w_n}$
- Bob: Encryption
 - Plaintext vector $\vec{m} = (m_1, \dots, m_n) \in \mathbb{Z}^n$
 - $\vec{v} = \vec{m}W = m_1\vec{w_1} + \cdots + m_n\vec{w_n} \in L$
 - Choose small random vector $\vec{r} \in \mathbb{R}^n$
 - Send ciphertext $\vec{e} = \vec{v} + \vec{r} \in \mathbb{R}^n$
- Alice: Decryption
 - Use good basis to recover $\vec{v} \in L$ (will see details shortly)
 - $\vec{m} = \vec{v} W^{-1}$

Let
$$V = \begin{pmatrix} 1 & 1 & 2 \\ -3 & 1 & 1 \\ -1 & -1 & 3 \end{pmatrix}$$
 and $W = \begin{pmatrix} 723 & -285 & -403 \\ -691 & 273 & 385 \\ -43 & 17 & 24 \end{pmatrix}$

- Verify V and W are bases for the same lattice: $W.V^{-1} =$
- Hadamard(V) = Hadamard(W) =
- Bob encrypts m = {4, 1, 5} using ephemeral r {-1, 0, 1}
 v = m.W =
 e = v + r =

Theorem 7.34 (Babai's Closest Vertex Algorithm)

Let $L \subset \mathbb{R}^n$ be a lattice of dimension n with basis $\mathcal{B} = \{\vec{v_1}, \dots, \vec{v_n}\}$ and let $\vec{e} \in \mathbb{R}^n$ be an arbitrary vector.

If the basis vectors are sufficiently orthogonal, the following \vec{v} solves the CVP:

• Write
$$\vec{e} = t_1 \vec{v_1} + \dots + t_n \vec{v_n}$$
 with $t_1, \dots, t_n \in \mathbb{R}$

$$(\vec{t} = \vec{e}.V^{-1})$$

• Set
$$a_i = \lfloor t_i \rceil$$
 for $1 \le i \le n$ (i.e. round t_i)

$$(\vec{a} = Round(\vec{t}))$$

• Then
$$\vec{\mathbf{v}} = a_1 \vec{\mathbf{v_1}} + \cdots + a_n \vec{\mathbf{v_n}}$$

$$(\vec{v} = \vec{a}.V)$$

•
$$t = e.V^{-1} =$$

•
$$a = Round(t) =$$

• Recover plaintext:
$$m = v.W^{-1} =$$

Notes on Security of GGH

- Originally suggested $L \subset \mathbb{R}^n$, n > 300 would be secure
- One attack is LLL-lattice reduction algorithm
 - Takes skewed public key basis and generates a more orthogonal basis for L
 - If generated basis is orthogonal enough, may be able to solve CVP
 - LLL is in the spirit of the Gram-Schmidt process, which you may have seen in Linear Algebra
 - G-S guarantees orthogonal vectors, but may result in non-integer entries
 - Mathematica command LatticeReduce[] implements LLL

Notes on Security of GGH (cont)

- Need to be careful with generating ephemeral \vec{r}
 - If send same plaintext twice with different \vec{r} , then gives information to break
 - If \vec{r} deterministic based on \vec{m} , then also gives information
- There's a lot of subtlety with random number generators