- 1. Use the Maclaurin series for cos(x) to approximate cos(2) accurate within 0.01
- 2. Use the Maclaurin series for e^x to create the Maclaurin series for e^{-x^3}
- 3. Use your answer from 2 to create a Maclaurin series for xe^{-x^3}
- 4. What is the Maclaurin series for $f(x) = \frac{1}{1-x}$ where |x| < 1? Hint: Think about geometric series

1. Use series to approximate $\int_0^1 xe^{-x^3} dx$ accurate within 0.01

2. Use that
$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$
 to find the Maclaurin series for $f(x) = \frac{1}{1+x^2}$

3. Use your answer from 2 to find the Maclaurin series for arctan(x)

4. Approximate arctan(1) by using your series from 3 and using WolframAlpha to compute S_{100}