The Fundamental Theorem of Calculus, Part 2

Let f be continuous on $[a, b]$ and let F be any antiderivative of f. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Being able to find antiderivatives is a good thing!

Basic derivative rules where c is a constant and f, g are functions

$$
\begin{array}{rlrl}
\frac{d}{d x} c & =0 & \frac{d}{d x} \tan (x) & =\sec (x)^{2} \\
\frac{d}{d x} x^{k} & =k x^{k-1} & \frac{d}{d x} \sec (x) & =\sec (x) \tan (x) \\
\frac{d}{d x} e^{x} & =e^{x} & (c \cdot f(x))^{\prime} & =c \cdot f^{\prime}(x) \\
\frac{d}{d x} \ln (x) & =\frac{1}{x} & (f+g)^{\prime} & =f^{\prime}+g^{\prime} \\
\frac{d}{d x} \sin (x) & =\cos (x) & (f \cdot g)^{\prime} & =f^{\prime} \cdot g+f \cdot g^{\prime} \\
\frac{d}{d x} \cos (x) & =-\sin (x) & \left(\frac{f}{g}\right)^{\prime} & =\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}} \\
& (f(g(x)))^{\prime} & =f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{array}
$$

Ground Rules for Group Work

- We all bring different perspectives and have different strengths to contribute
- Mathematics is not a competitive sport
- In-class work is not a race
- If you understand, then you should be able to explain your reasoning
- If you are uncertain, ask questions! Mostly likely others have the same questions
- Listen
- There is value in productive struggle
- In breakout rooms
- Introduce yourselves!
- Have your microphone on, and camera if possible

Evaluate the following integrals \& verify your answers by graphing the integrand

1. $\int_{-1}^{1} x^{4}-4 x^{3}+\pi d x$
2. $\int_{1}^{4} 2 x \cos (x)-x^{2} \sin (x) d x$
3. $\int_{-2}^{2} x^{3}+x^{2}-2 x d x$
4. $\int_{0}^{1} 3 x^{2}\left(x^{3}+3\right)^{5} d x$
5. $\int_{0}^{\pi / 2}-\sin (2 x) d x$
6. $\int_{-1}^{1} 3 \sec (x)^{2} d x$
7. $\int_{1}^{3} e^{x}+\frac{1}{x} d x$
8. $\int_{-1}^{1} \sin \left(x^{3}\right) d x$
