Announcements

- Same schedule for tutorials as last week
- Problem Set due Friday

• The gradient of f(x, y) is the vector-valued function

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

• The gradient of f(x, y) is the vector-valued function

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

• If $\vec{\bf u}$ is a unit vector, then we calculate the directional derivative of f at (x_0,y_0) in the $\vec{\bf u}$ direction by

$$D_{\vec{\mathbf{u}}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \vec{\mathbf{u}}$$

Notice <u>u</u> must be a unit vector!

Let
$$f(x,y) = 3xy^2 + 2x - 4y^2$$
 and $\vec{u} = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$

Then $D_{\vec{u}} f(2,1)$, the directional derivative of f at (2,1) in the direction of \vec{u} , is

- (a) (5, 4)
- (b) $(3, \frac{16}{5})$
- (c) $-\frac{1}{5}$
- (d) $\frac{31}{5}$
- (e) I'm not willing to commit. . .

Let
$$f(x,y) = 3xy^2 + 2x - 4y^2$$
 and $\vec{v} = \langle -3, -1 \rangle$

Then $D_{\vec{i}\vec{i}} f(2,1)$, the directional derivative of f at (2,1) in the direction of \vec{v} , is

(a)
$$-19$$

(b)
$$\left< -\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}} \right>$$

(c)
$$-6.008$$

(d)
$$-\frac{19}{\sqrt{10}}$$

(e) I'm not willing to commit. . .

At a point (x_0, y_0) ,

• f increases fastest in the direction of $\nabla f(x_0, y_0)$

• f decreases fastest in the direction of $-\nabla f(x_0, y_0)$

• $\nabla f(x_0, y_0)$ is perpendicular to the level curve

$\overline{f(x,y)} = 3xy^2 + 2x - 4y^2$ increases fastest in the direction of ∇f

 ∇f overlayed on contour plot of f

$f(x,y)=3xy^2+2x-4y^2$ decreases fastest in the direction of $-\nabla f$

 $-\nabla f$ overlayed on contour plot of f

Math 104 Calc II (T. Ratliff) April 12, 2021

Cool application of ∇f being perpendicular to level curves

One of ideas behind converting a digital image to look like a painting

```
    https://www.vfxvoice.com/
painting-the-afterlife-in-what-dreams-may-come/
```

https://revisionfx.com/company/

https://vimeo.com/144021430