Announcements

- Exam 2 this week Covers Improper Integrals and Series
 - Cheat Sheet due Wednesday @ 8:00 am
 - Exam available Wednesday @ 8:00 am
 - · Due Friday @ midnight
 - · Same ground rules as for Exam 1
- "Normal" schedule for tutorials this week
- Let me know if you have any questions about courses for next semester

• If
$$\vec{\mathbf{a}}=\langle a_1,a_2
angle$$
 then the length of $\vec{\mathbf{a}}$ is $\|\vec{\mathbf{a}}\|=\sqrt{a_1^2+a_2^2}$

• The unit vector pointing in the same direction as \vec{a} is

$$\vec{\mathbf{u}} = \frac{\vec{\mathbf{a}}}{\|\vec{\mathbf{a}}\|} = \frac{1}{\|\vec{\mathbf{a}}\|} \langle a_1, a_2 \rangle$$

• If $\vec{\mathbf{a}} = \langle a_1, a_2 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2 \rangle$, then the *dot product* is defined by

$$\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}=a_1\,b_1+a_2\,b_2$$

Let $\vec{v_1} = \langle 2, 3 \rangle\,, \quad \vec{v_2}\, \langle -6, 4 \rangle$

If θ is the angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ then $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = ||\vec{\mathbf{a}}|| \, ||\vec{\mathbf{b}}|| \, \cos(\theta)$

- Shows \vec{a} and \vec{b} are perpendicular if and only if $\vec{a} \cdot \vec{b} = 0$
- Allows us find angle between *any* two vectors: $cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$
- Also carries over to vectors in 3-space

• Find $\vec{u_a}$, the unit vector in the same direction as \vec{a}

• Find $\vec{u_b}$

• Find the angle between \vec{a} and \vec{b}

- Find the angle between $\vec{u_a}$ and $\vec{u_b}$

Give two vectors perpendicular to \vec{a}

• Find $\vec{u_a}$, the unit vector in the same direction as \vec{a}

• Find the angle between \vec{a} and \vec{b}

• Find two vectors perpendicular to \vec{a}