Theorem 2.3.2: Every convergent sequence is bounded.

1. For each sequence from Thursday's in-class work, find a bound on the sequence. That is, find an $M \in \mathbb{R}$ such that $\left|a_{n}\right|<M \forall n \in \mathbb{N}$.
2. Fill in the details of the proof of the Theorem.

- Suppose that $\left(x_{n}\right)$ converges to a We want to show $\exists M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M$ for all n
- Pick $\epsilon=1$. Then there exists N such that $x_{n} \in V_{1}(a)$ for all $n \geq N$ (Why?)
- Then $\left|x_{n}\right|<|a|+1$ for all $n \geq N$ (Why? What if $a<0$?)

- Pick M accordingly
- State the conclusion (And draw a box. And check it.)

Theorem 2.3.3 (Algebraic Limit Theorem)

Let $\lim a_{n}=a$ and $\lim b_{n}=b$. Then

1. $\lim \left(c a_{n}\right)=c a$ for all $c \in \mathbb{R}$
2. $\lim \left(a_{n}+b_{n}\right)=a+b$
3. $\lim \left(a_{n} b_{n}\right)=a b$
4. $\lim \left(\frac{a_{n}}{b_{n}}\right)=\frac{a}{b}$ if $b \neq 0$

Theorem 2.3.4 (Order Limit Theorem)

Let $\lim a_{n}=a$ and $\lim b_{n}=b$. Then

1. If $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$
2. If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $a \leq b$
3. If there exists $c \in \mathbb{R}$ such that $c \leq b_{n}$ for all $n \in \mathbb{N}$, then $c \leq b$ Similarly, if $a_{n} \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$
