Theorem 2.3.2: Every convergent sequence is bounded.

- 1. For each sequence from Thursday's in-class work, find a bound on the sequence. That is, find an $M \in \mathbb{R}$ such that $|a_n| < M \forall n \in \mathbb{N}$.
- 2. Fill in the details of the proof of the Theorem.
 - Suppose that (x_n) converges to *a* We want to show $\exists M \in \mathbb{R}$ such that $|x_n| \leq M$ for all *n*
 - Pick $\epsilon = 1$. Then there exists N such that $x_n \in V_1(a)$ for all $n \ge N$ (Why?)
 - Then $|x_n| < |a| + 1$ for all $n \ge N$ (Why? What if a < 0?)

- Pick M accordingly
- State the conclusion (And draw a box. And check it.)

Theorem 2.3.3 (Algebraic Limit Theorem)

Let $\lim a_n = a$ and $\lim b_n = b$. Then

- 1. $\lim(ca_n) = ca$ for all $c \in \mathbb{R}$
- 2. $\lim(a_n + b_n) = a + b$
- 3. $\lim(a_n b_n) = ab$
- 4. $\lim \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$ if $b \neq 0$

Let $\lim a_n = a$ and $\lim b_n = b$. Then

- 1. If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$
- 2. If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$
- 3. If there exists $c \in \mathbb{R}$ such that $c \leq b_n$ for all $n \in \mathbb{N}$, then $c \leq b$ Similarly, if $a_n \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$