
Theorem 2.3.2: Every convergent sequence is bounded.

1. For each sequence from Thursday’s in-class work, find a bound on the sequence.
That is, find an M ∈ R such that |an| < M ∀ n ∈ N.

2. Fill in the details of the proof of the Theorem.
• Suppose that (xn) converges to a
We want to show ∃M ∈ R such that |xn| ≤ M for all n

• Pick ϵ = 1. Then there exists N such that xn ∈ V1(a) for all n ≥ N (Why?)

• Then |xn| < |a|+ 1 for all n ≥ N (Why? What if a < 0? )
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2.3 The Algebraic and Order Limit
Theorems

The real purpose of creating a rigorous definition for convergence of a sequence is
not to have a tool to verify computational statements such as lim 2n/(n+2) = 2.
Historically, a definition of the limit like Definition 2.2.3 came 150 years after the
founders of calculus began working with intuitive notions of convergence. The
point of having such a logically tight description of convergence is so that we
can confidently prove statements about convergent sequences in general. We are
ultimately trying to resolve arguments about what is and is not true regarding
the behavior of limits with respect to the mathematical manipulations we intend
to inflict on them.

As a first example, let us prove that convergent sequences are bounded. The
term“bounded” has a rather familiar connotation but, like everything else, we
need to be explicit about what it means in this context.

Definition 2.3.1. A sequence (xn) is bounded if there exists a number M > 0
such that |xn| ≤ M for all n ∈ N.

Geometrically, this means that we can find an interval [−M,M ] that contains
every term in the sequence (xn).

Theorem 2.3.2. Every convergent sequence is bounded.

Proof. Assume (xn) converges to a limit l. This means that given a particular
value of ϵ, say ϵ = 1, we know there must exist an N ∈ N such that if n ≥ N ,
then xn is in the interval (l − 1, l + 1). Not knowing whether l is positive or
negative, we can certainly conclude that

|xn| < |l|+ 1

for all n ≥ N .
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We still need to worry (slightly) about the terms in the sequence that come
before the Nth term. Because there are only a finite number of these, we let

M = max{|x1|, |x2|, |x3|, . . . , |xN−1|, |l|+ 1}.

It follows that |xn| ≤ M for all n ∈ N, as desired.

This chapter began with a demonstration of how applying familiar algebraic
properties (commutativity of addition) to infinite objects (series) can lead to
paradoxical results. These examples are meant to instill in us a sense of caution

a-1        a         a+1

• Pick M accordingly

• State the conclusion (And draw a box. And check it.)
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Theorem 2.3.3 (Algebraic Limit Theorem)

Let liman = a and limbn = b. Then

1. lim(can) = ca for all c∈ R

2. lim(an + bn) = a+ b

3. lim(anbn) = ab

4. lim
(
an
bn

)
= a

b if b ̸= 0
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Theorem 2.3.4 (Order Limit Theorem)

Let liman = a and limbn = b. Then

1. If an ≥ 0 for all n ∈ N, then a ≥ 0

2. If an ≤ bn for all n ∈ N, then a ≤ b

3. If there exists c ∈ R such that c ≤ bn for all n ∈ N, then c ≤ b
Similarly, if an ≤ c for all n ∈ N, then a ≤ c
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