Fill in the details of the proof:

- If A is finite, then we are done.
- Suppose A is infinite. We want to define one-one onto $g:\mathbb{N} o \mathsf{A}$
 - Let $f: \mathbb{N} \to B$ be one-one onto b_1, b_2, b_3, \ldots
 - Let $n_1 = \min \{n \in \mathbb{N} \mid f(n) \in A\}$. i.e. Find first element of A in the listing of B Define $g(1) = f(n_1)$
 - Let $n_2 = \min \{n \in \mathbb{N} \mid f(n) \in A \{g(1)\}\}$. i.e. Find next element of A in the list Define $g(2) = f(n_2)$
 - Use the same process to define the general terms n_i and g(i)
 - Use that f is one-one and onto to show that g is one-one onto