Theorem 1.5.7: If $A \subset B$ and B is countable, then A is either countable or finite.

Fill in the details of the proof:

- If A is finite, then we are done.
- Suppose A is infinite. We want to define one-one onto $g: \mathbb{N} \rightarrow A$
- Let $f: \mathbb{N} \rightarrow B$ be one-one onto $b_{1}, b_{2}, b_{3}, \ldots$
- Let $n_{1}=\min \{n \in \mathbb{N} \mid f(n) \in A\}$. i.e. Find first element of A in the listing of B Define $g(1)=f\left(n_{1}\right)$
- Let $n_{2}=\min \{n \in \mathbb{N} \mid f(n) \in A-\{g(1)\}\}$. i.e. Find next element of A in the list Define $g(2)=f\left(n_{2}\right)$
- Use the same process to define the general terms n_{i} and $g(i)$
- Use that f is one-one and onto to show that g is one-one onto

