1. Fill in the details of the proof of the Archimedean Property

(i) Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

- Use a proof by contradiction
- Assume $\exists x \in \mathbb{R} \ \ni \ n \leq x \ \forall \ n \in \mathbb{N}$
- Then $\exists \ \alpha \in \mathbb{R}$ where $\alpha = \sup \mathbb{N}$
- Then $\exists n \in \mathbb{N}$ such that $\alpha 1 < n$
- Then $\alpha < n + 1$
- Oops.

(ii) Given any real number y > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < y$. • Let $x = \frac{1}{y}$ and apply part (i) 1. Find $r = \frac{m}{n} \in \mathbb{Q}$ such that $\sqrt{2} < r < \sqrt{3}$

- 2. Find $r = \frac{m}{n} \in \mathbb{Q}$ such that $\frac{333}{106} < r < \frac{22}{7}$
- 3. Find a value for the denominator *n* that guarantees there is a rational $r = \frac{m}{n} \in \mathbb{Q}$ such that $\sqrt{2} < r < \sqrt{3}$
- 4. For arbitrary $a, b \in \mathbb{R}$, find a value for the denominator n that guarantees there is a rational $r = \frac{m}{n} \in \mathbb{Q}$ such that a < r < b