1. Fill in the details of the proof of the Archimedean Property

(i) Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>x$.

- Use a proof by contradiction
- Assume $\exists x \in \mathbb{R} \quad \ni \leq x \forall n \in \mathbb{N}$
- Then $\exists \alpha \in \mathbb{R}$ where $\alpha=\sup \mathbb{N}$
- Then $\exists n \in \mathbb{N}$ such that $\alpha-1<n$
- Then $\alpha<n+1$
- Oops.
(ii) Given any real number $y>0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<y$.
- Let $x=\frac{1}{y}$ and apply part (i)

2. Density of \mathbb{Q} in \mathbb{R}

1. Find $r=\frac{m}{n} \in \mathbb{Q}$ such that $\sqrt{2}<r<\sqrt{3}$
2. Find $r=\frac{m}{n} \in \mathbb{Q}$ such that $\frac{333}{106}<r<\frac{22}{7}$
3. Find a value for the denominator n that guarantees there is a rational $r=\frac{m}{n} \in \mathbb{Q}$ such that $\sqrt{2}<r<\sqrt{3}$
4. For arbitrary $a, b \in \mathbb{R}$, find a value for the denominator n that guarantees there is a rational $r=\frac{m}{n} \in \mathbb{Q}$ such that $a<r<b$
