1. Write a formal definition for the greatest lower bound of a set $A \subset \mathbb{R}$
2. Identify the supremum and infimum of each set of real numbers

$$
A=[1,3), \quad B=\left\{\left.-\frac{3}{k} \right\rvert\, k \in \mathbb{N}\right\}, \quad C=\left\{x \in \mathbb{R} \mid x^{2}<2\right\}
$$

3. Let $S=\left\{r \in \mathbb{Q} \mid r^{2}<2\right\}$

Explain how S demonstrates that \mathbb{Q} does not satisfy AOC.
That is, S is a non-empty set of rational numbers that is bounded above, but S does not have a least upper bound that is rational.

