For each function, sketch a graph.

Where do you think the function is continuous? Discontinuous?

1. $f(x)=2 x+3$
2. $g(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}$
3. $h(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}$
4. $t(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \in \mathbb{Q}-\{0\} \text { in lowest terms } n>0 \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}$

Hint: First consider $x \in \mathbb{Z}$, then $x=\frac{k}{2}, k \in \mathbb{Z}$, then $x=\frac{k}{3}, k \in \mathbb{Z}$, etc

Theorem 4.2.3 (Sequential Criterion for Functional Limits)

Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of A.
Then $\lim _{x \rightarrow c} f(x)=L$ iff for all sequences $\left(x_{n}\right)$ in A satisfying $x_{n} \neq c$ and $\left(x_{n}\right) \rightarrow c$ it follows that $f\left(x_{n}\right) \rightarrow L$.

Theorem 4.2.3 (Sequential Criterion for Functional Limits)

Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of A.
Then $\lim _{x \rightarrow c} f(x)=L$ iff for all sequences $\left(x_{n}\right)$ in A satisfying $x_{n} \neq c$ and $\left(x_{n}\right) \rightarrow c$ it follows that $f\left(x_{n}\right) \rightarrow L$.

Corollary 4.2.5 (Divergence Criterion for Functional Limits)

Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of A.
If there exist two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A where $x_{n} \neq c$ and $y_{n} \neq c$ and

$$
\lim x_{n}=\lim y_{n}=c \text { but } \lim f\left(x_{n}\right) \neq \lim f\left(y_{n}\right)
$$

then the limit $\lim _{x \rightarrow c} f(x)$ does not exist.

